Codeforces 1686A

问题描述

有一个有 n n n个整数的数组 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an

当你看完一部电影《瞬息全宇宙》后,你想出来了以下的操作。

在一次操作中,从数组里选择 n − 1 n-1 n1个元素并将其替换为对应的算术平均值,不需要四舍五入。

举个例子,通过 [ 1 , 2 , 3 , 1 ] [1,2,3,1] [1,2,3,1],选择前三个元素,可以得到 [ 2 , 2 , 2 , 1 ] [2,2,2,1] [2,2,2,1]。如果选择第三个元素除外的元素,可以得到 [ 4 3 , 4 3 , 3 , 4 3 ] [\frac{4}{3},\frac{4}{3},3,\frac{4}{3}] [34,34,3,34]

可否在有限次操作中将这个数组的所有元素变得相等?

输入格式

第一行为一个整数 t ( 1 ≤ t ≤ 200 ) t (1 \le t \le 200) t(1t200),表示测试数据组数。以下为每组测试数据的描述。

第一行为一个整数 n ( 3 ≤ n ≤ 50 ) n(3 \le n \le 50) n(3n50),表示整数的个数。

第二行为 n n n个整数 a 1 , a 2 , . . . , a n ( 0 ≤ a i ≤ 100 ) a_1,a_2,...,a_n (0 \le a_i \le 100) a1,a2,...,an(0ai100)

输出格式

对每一组测试数据,如果可以在有限次操作中把所有的元素变得相等,输出YES,否则输出NO

可以输出任何大小写的YESNO

样例输入与输出

输入输出
4
3
42 42 42
5
1 2 3 4 5
4
4 3 2 1
3
24 2 22
YES
YES
NO
NO

解释

第一个测试数据,所有元素相等。

第二个测试数据,可以选择除第三个元素以外的其他元素,平均值为$ \frac{1 + 2 + 4 + 5}{4} = 3 $ , 所以数组会变为 $ [3, 3, 3, 3, 3] $ 。

第三个和第四个测试数据是不可能把所有元素变相等的。

题解

分析过程:如去掉任何一个元素变成对应的平均值,假定去掉的是第一个元素,则有 S n − a 1 = x ‾ ⋅ ( n − 1 ) S_n-a_1=\overline{x} \cdot (n-1) Sna1=x(n1)

S n = x ‾ ⋅ n S_n = \overline x \cdot n Sn=xn

所以去掉的元素必须和平均值相等。

代码如下:

#include <bits/stdc++.h>
using namespace std;
int a[51];
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		int n;
		scanf("%d",&n);
		int flag=0,sum=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
			sum+=a[i];
		}
		for(int i=1;i<=n;i++)
		{
			if(a[i]*n==sum) flag=1;
		}
		if(flag) printf("YES\n");
		else printf("NO\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值