问题描述
有一个有 n n n个整数的数组 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an。
当你看完一部电影《瞬息全宇宙》后,你想出来了以下的操作。
在一次操作中,从数组里选择 n − 1 n-1 n−1个元素并将其替换为对应的算术平均值,不需要四舍五入。
举个例子,通过 [ 1 , 2 , 3 , 1 ] [1,2,3,1] [1,2,3,1],选择前三个元素,可以得到 [ 2 , 2 , 2 , 1 ] [2,2,2,1] [2,2,2,1]。如果选择第三个元素除外的元素,可以得到 [ 4 3 , 4 3 , 3 , 4 3 ] [\frac{4}{3},\frac{4}{3},3,\frac{4}{3}] [34,34,3,34]。
可否在有限次操作中将这个数组的所有元素变得相等?
输入格式
第一行为一个整数 t ( 1 ≤ t ≤ 200 ) t (1 \le t \le 200) t(1≤t≤200),表示测试数据组数。以下为每组测试数据的描述。
第一行为一个整数 n ( 3 ≤ n ≤ 50 ) n(3 \le n \le 50) n(3≤n≤50),表示整数的个数。
第二行为 n n n个整数 a 1 , a 2 , . . . , a n ( 0 ≤ a i ≤ 100 ) a_1,a_2,...,a_n (0 \le a_i \le 100) a1,a2,...,an(0≤ai≤100)。
输出格式
对每一组测试数据,如果可以在有限次操作中把所有的元素变得相等,输出YES
,否则输出NO
。
可以输出任何大小写的YES
和NO
。
样例输入与输出
输入 | 输出 |
---|---|
4 3 42 42 42 5 1 2 3 4 5 4 4 3 2 1 3 24 2 22 | YES YES NO NO |
解释
第一个测试数据,所有元素相等。
第二个测试数据,可以选择除第三个元素以外的其他元素,平均值为$ \frac{1 + 2 + 4 + 5}{4} = 3 $ , 所以数组会变为 $ [3, 3, 3, 3, 3] $ 。
第三个和第四个测试数据是不可能把所有元素变相等的。
题解
分析过程:如去掉任何一个元素变成对应的平均值,假定去掉的是第一个元素,则有 S n − a 1 = x ‾ ⋅ ( n − 1 ) S_n-a_1=\overline{x} \cdot (n-1) Sn−a1=x⋅(n−1)
S n = x ‾ ⋅ n S_n = \overline x \cdot n Sn=x⋅n
所以去掉的元素必须和平均值相等。
代码如下:
#include <bits/stdc++.h>
using namespace std;
int a[51];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
int flag=0,sum=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
for(int i=1;i<=n;i++)
{
if(a[i]*n==sum) flag=1;
}
if(flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}