洛谷·「P6156 简单题」加强版

初见安~这里是传送门:洛谷P6222 「P6156 简单题」加强版

题解

头一次几乎全程自己推式子推出来的,好耶!

那就让我们开始吧——

(因为懒所以注意求和符号上面的上界都是下取整)

\large \sum_{i=1}^n\sum_{j=1}^n(i+j)^kgcd(i,j)\mu^2(gcd(i,j))\\ =\sum_{d=1}^n\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}d^{k+1}(i+j)^k\mu^2(d)[gcd(i,j)=1]\\ =\sum_{d=1}^nd^{k+1}\mu^2(d)\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}(i+j)^k\sum_{x|gcd(i,j)}\mu(x)\\ =\sum_{d=1}^nd^{k+1}\mu^2(d)\sum_{x=1}^{\frac{n}{d}}\mu(x)\sum_{i=1}^{\frac{n}{dx}}\sum_{j=1}^{\frac{n}{dx}}x^k(i+j)^k

到这里我们对于(i+j)^k先放一放,用g来替换一下,假设我们已经会预处理g并O1调用:

\large g(n)=\sum_{i=1}^n\sum_{j=1}^n(i+j)^k\\

我们继续推前面的原式:

\large =\sum_{d=1}^nd^{k+1}\mu^2(d)\sum_{x=1}^{\frac{n}{d}}\mu(x)x^kg(\frac{n}{dx})\\

到这里看着不太好做了,因为要同时从1开始枚举d和x,很麻烦。考虑到积性函数的性质,我们尝试枚举dx=d*x:

\large \sum_{dx=1}^ndx^kg(\frac{n}{dx})\sum_{d|dx}\mu^2(d)\mu(\frac{dx}{d})d

再把后面枚举d的部分提出来,可以发现这是几个积性函数的卷积,所以这也是一个积性函数。也就是:

\large \\f(n)=\sum_{d|n}\mu^2(d)\mu(\frac{n}{d})d\\ f(i*p)=f(i)*f(p)

既然是积性函数,那就要考虑关于质因数的性质了。

如果上式中i和p互质,那一定满足。考虑不互质的时候。

设一个质因子p。因为莫比乌斯函数的性质,所以有:

\large \\ f(p)=-1+p=p-1\\ f(p^2)=0+\mu(p)*p+0=\mu(p)*p\\ f(p^3)=0+0+0+0=0\\ \cdots

换言之,因为同时含有d和n/d的莫比乌斯函数,所以只要其中一个含有p的次数超过了1,值就为0。

所以若f(i)中,i含某个质因子的次数超过了1,那值就为0。

至此已经可以线筛出f的值了。原式就只剩下:

\large \sum_{dx=1}^ndx^kg(\frac{n}{dx})f(dx)

显然可以乘除分块,所以最后的问题就是怎么算g。

考虑枚举i+j的和。

\large g(n)=\sum_{i=1}^n\sum_{j=1}^n(i+j)^k\\ =\sum_{i=1}^{n+1}i^k(i-1)+\sum_{i=n+2}^{2n}i^k(2n-(i-1))\\ =\sum_{i=1}^{n+1}i^k(i-1)-\sum_{i=n+2}^{2n}i^k(i-1)+2n\sum_{i=n+2}^{2n}i^k

这里就只有\sum i^k(i-1)和\sum i^k了。两个函数分别前缀和预处理一下就可以差分O1得到g函数了。注意,g要处理到2n,也就是2e7去。

这个题最恶心的地方也就在这里了。因为n很大有2e7,题目只有250MB,所以你的空间最多开6.5e7的int,要炸掉了:)

因为光是为了算g就看似要开3个2e7的数组,所以最后深思熟虑后我滚了又滚,在230+MB下完成了这个题……

上代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
#define maxn 10000007
#define int unsigned int
using namespace std;
typedef long long ll;
const int mx = 1e7;
int read() {
	int x = 0, f = 1, ch = getchar();
	while(!isdigit(ch)) {if(ch == '-') f = -1; ch = getchar();}
	while(isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar();
	return x * f;
}

int T, n, k;
int pri[maxn << 1], f[maxn << 1], pwr[maxn << 1], tot = 0;
inline int pw(int a, int b) {int res = 1; while(b) {if(b & 1) res *= a; a *= a, b >>= 1;} return res;}
bitset<maxn << 1> in;
signed main() {
	T = read(), n = read(), k = read();
	pwr[1] = 1; f[1] = 1;//i^k也要线筛,不然直接TLE。
	for(int i = 2; i <= (n << 1); i++) {
		if(!in[i]) pri[++tot] = i, f[i] = i - 1, pwr[i] = pw(i, k);
		for(int j = 1; j <= tot && 1ll * i * pri[j] <= (n << 1); j++) {
			register int g = i * pri[j];
			in.set(g), f[g] = f[i] * f[pri[j]], pwr[g] = pwr[i] * pwr[pri[j]];
			if(i % pri[j] == 0) {//如文所述,筛f
				if(i / pri[j] % pri[j] == 0) f[g] = 0;
				else f[g] = -f[i / pri[j]] * pri[j];
				break;
			}
		}
	}
		
	for(int i = 1; i <= mx; i++) f[i] = f[i] * pwr[i] + f[i - 1];//f和dx^k合在一起
	for(int i = 1; i <= (mx << 1); i++) pri[i] = pwr[i] * (i - 1) + pri[i - 1], pwr[i] += pwr[i - 1];//pri其实是i^k(i-1),pw前缀和
	for(int i = 1; i <= mx; i++) pri[i] = (pri[i + 1] << 1) - pri[i << 1] + (i << 1) * (pwr[i << 1] - pwr[i + 1]);
    //压空间……确定不影响后直接在pri上开刀。
	while(T--) {
		n = read(); register int ans = 0;
		for(int l = 1, r; l <= n; l = r + 1) {
			r = n / (n / l);
			ans += (f[r] - f[l - 1]) * pri[n / l];//裸的整除分块。
		}
		printf("%u\n", ans);
	}
	return 0;
}

迎评:)
——End——

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值