自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

逐梦er的博客

到底什么是热爱 源于内心的脆弱 短暂的快活 像飞蛾扑火

原创 机器学习入门笔记总目录

机器学习入门笔记是我参考周志华老师的《机器学习》西瓜书、李杭老师的《统计学习方法》第二版以及课程教材等资料写的。该目录主要记录关于机器学习和算法基本概念的博客链接。——————————————————————————————————————好好学习,好好努力,希望自己能够坚持下去!!!目录机器学习的基本概念和相关术语https://blog.csdn.net/qq_43328040/article/details/106823245机器学习入门笔记(一):模型性能评价与选择https:

2020-06-28 16:51:44 7401 40

原创 Python代码实现飞机大战
原力计划

文章目录经典飞机大战一.游戏设定二.我方飞机三.敌方飞机四.发射子弹五.发放补给包六.主模块经典飞机大战源代码以及素材资料(图片,音频)可从下面的github中下载:飞机大战源代码以及素材资料github项目地址链接—————————————————————————————————————————————————————————不知道大家有没有打过飞机,喜不喜欢打飞机。当我第一次接触这个东西的时候,我的内心是被震撼到的。第一次接触打飞机的时候作者本人是身心愉悦的,因为周边的朋友都在打飞机, 每

2020-06-19 11:40:37 22856 115

原创 动态规划系列问题—从小白到大佬的入门、进阶之旅!!!
原力计划

文章目录前言一.什么是动态规划二.动态规划术语三.简单递归问题四.经典背包问题五.线性DP5.1数字三角形5.2子序列问题(LIS、LCS)六.区间DP6.1原理6.2模板6.3实战6.3.1 石子合并问题6.3.2 其他区间DP问题(思路和代码详解)七.树形DP7.1原理7.2实战7.2.1 没有上司的舞会7.2.2 其他树形DP问题(思路和代码详解)八.数位DP8.1原理8.2实战8.2.1 数字游戏8.2.2 其他数位DP问题(思路和代码详解)九.状压DP9.1原理9.2位运算基础9.3实战9.3.1

2020-06-18 23:08:44 9776 25

原创 pytorch学习笔记(三十):RNN反向传播计算图公式推导

前言本节将介绍循环神经网络中梯度的计算和存储方法,即 通过时间反向传播(back-propagation through time)。正向传播在循环神经网络中比较直观,而通过时间反向传播其实是反向传播在循环神经网络中的具体应用。我们需要将循环神经网络按时间步展开,从而得到模型变量和参数之间的依赖关系,并依据链式法则应用反向传播计算并存储梯度。1. 定义模型简单起见,我们考虑一个无偏差项的循环神经网络,且激活函数为恒等映射(ϕ(x)=x\phi(x)=xϕ(x)=x)。设时间步 ttt 的输入为单样本

2020-08-08 11:10:27 124 22

原创 pytorch学习笔记(二十九):简洁实现循环神经网络

本节将使用PyTorch来更简洁地实现基于循环神经网络的语言模型。首先,我们读取周杰伦专辑歌词数据集。import timeimport mathimport numpy as npimport torchfrom torch import nn, optimimport torch.nn.functional as Fimport syssys.path.append("..") import d2lzh_pytorch as d2ldevice = torch.device('cu

2020-08-07 13:19:28 212 18

原创 pytorch学习笔记(二十八):循环神经网络的从零开始实现

文章目录1. one-hot向量2. 初始化模型参数3. 定义模型4. 定义预测函数5. 裁剪梯度6. 困惑度7. 定义模型训练函数8. 训练模型并创作歌词小结在本节中,我们将从零开始实现一个基于字符级循环神经网络的语言模型,并在周杰伦专辑歌词数据集上训练一个模型来进行歌词创作。首先,我们读取周杰伦专辑歌词数据集:import timeimport mathimport numpy as npimport torchfrom torch import nn, optimimport torch

2020-08-07 12:37:34 157 19

原创 pytorch学习笔记(二十七):Batch-Norm

文章目录前言1. 批量归一化层1.1 对全连接层做批量归一化1.2 对卷积层做批量归一化1.3 预测时的批量归一化2. 从零开始实现2.1 使用批量归一化层的LeNet3. 简洁实现小结前言本节我们介绍 批量归一化(batch normalization)层,它能让较深的神经网络的训练变得更加容易 。通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变化。但对深层神经网络来说,即使输入数据已做标准化,训练中模型参数的更新依然很容易造

2020-08-06 11:00:53 154 19

原创 pytorch学习笔记(二十六):NIN

LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深。本节我们介绍网络中的网络(NiN)。它提出了另外一个思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。1. NiN块我们知道,卷积层的输入和输出通常是四维数组(样本,通道,高,宽),而全连接层的输入和输出则通常是二维数组(样本,特征)。如果想在全连接层后再

2020-08-05 20:47:19 47

原创 pytorch学习笔记(二十五):VGG

1. VGG块VGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为3×33\times 33×3的卷积层后接上一个步幅为2、窗口形状为2×22\times 22×2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量和输入输出通道数。import timeimport torchfrom torch import nn, optimimport syssys.path.append("..")

2020-08-05 13:04:25 772 15

原创 pytorch学习笔记(二十四):深度卷积神经网络(AlexNet)

1. AlexNetAlexNet与LeNet的设计理念非常相似,但也有显著的区别。第一,与相对较小的LeNet相比,AlexNet包含8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。下面我们来详细描述这些层的设计。AlexNet第一层中的卷积窗口形状是11×1111\times1111×11。因为ImageNet中绝大多数图像的高和宽均比MNIST图像的高和宽大10倍以上,ImageNet图像的物体占用更多的像素,所以需要更大的卷积窗口来捕获物体。第二层中的卷积窗口形状减小到5×5

2020-08-05 11:32:20 778 14

原创 pytorch学习笔记(二十三):卷积神经网络(LeNet)

LeNet使用多层感知机构造一个含单隐藏层的多层感知机模型来对Fashion-MNIST数据集中的图像进行分类。每张图像高和宽均是28像素。我们将图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中。然而,这种分类方法有一定的局限性。图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。对于大尺寸的输入图像,使用全连接层容易造成模型过大。假设输入是高和宽均为1000像素的彩色照片(含3个通道)。即使全连接层输出个数仍是256,该层权重参数的形状是3,000,0

2020-08-05 10:44:44 217 15

原创 pytorch学习笔记(二十二):Pooling

文章目录1. 二维最大池化层和平均池化层2. 填充和步幅3. 多通道小结实际图像里,我们感兴趣的物体不会总出现在固定位置:即使我们连续拍摄同一个物体也极有可能出现像素位置上的偏移。这会导致同一个边缘对应的输出可能出现在卷积输出Y中的不同位置,进而对后面的模式识别造成不便。在本节中我们介绍池化(pooling)层,它的提出是为了缓解卷积层对位置的过度敏感性。1. 二维最大池化层和平均池化层同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出。不同于卷积层里计算输入和核的

2020-08-04 12:24:07 192 19

原创 pytorch学习笔记(二十一):Channels

很多真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hhh和www(像素),那么它可以表示为一个3×h×w3\times h\times w3×h×w的多维数组。我们将大小为3的这一维称为通道(channel)维。本节我们将介绍含多个输入通道或多个输出通道的卷积核。1. 多输入通道当输入数据含多个通道时,我们需要构造一个输入通道数与输入数据的通道数相同的卷积核,从而能够与含多通道的输入数据做互相关运算。假设输入数据的通道数为cic_

2020-08-04 11:52:21 182 18

原创 pytorch学习笔记(二十):Padding-And-Strides

假设输入形状是nh×nwn_h\times n_wnh​×nw​,卷积核窗口形状是kh×kwk_h\times k_wkh​×kw​,那么输出形状将会是(nh−kh+1)×(nw−kw+1).(n_h-k_h+1) \times (n_w-k_w+1).(nh​−kh​+1)×(nw​−kw​+1).所以卷积层的输出形状由输入形状和卷积核窗口形状决定。本节我们将介绍卷积层的两个超参数,即填充和步幅。它们可以对给定形状的输入和卷积核改变输出形状。1. 填充填充(padding)是指在输入高和宽的两侧填

2020-08-04 11:29:22 158 22

原创 pytorch学习笔记(十九):二维卷积层

文章目录1. 二维互相关运算2. 二维卷积层3. 图像中物体边缘检测4. 通过数据学习核数组卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本节中,我们将介绍简单形式的二维卷积层的工作原理。1. 二维互相关运算虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-cor

2020-08-04 10:29:27 866 19

原创 pytorch学习笔记(十八):Use-Gpu

在本节中,我们将介绍如何使用单块NVIDIA GPU来计算。所以需要确保已经安装好了PyTorch GPU版本。准备工作都完成后,下面就可以通过nvidia-smi命令来查看显卡信息了。!nvidia-smi # 对Linux/macOS用户有效输出:Sun Mar 17 14:59:57 2019 +-----------------------------------------------------------------------------+| NVIDIA-SMI

2020-08-03 18:44:59 210 17

原创 pytorch学习笔记(十七):Read-Write

文章目录1. 读写Tensor2. 读写模型2.1 state_dict2.2 保存和加载模型1. 保存和加载`state_dict`(推荐方式)2. 保存和加载整个模型小结在实际中,我们有时需要把训练好的模型部署到很多不同的设备。在这种情况下,我们可以把内存中训练好的模型参数存储在硬盘上供后续读取使用。1. 读写Tensor我们可以直接使用save函数和load函数分别存储和读取Tensor。save使用Python的pickle实用程序将对象进行序列化,然后将序列化的对象保存到disk,使用sav

2020-08-03 18:42:08 206 16

原创 pytorch学习笔记(十六):Parameters

文章目录1. 访问模型参数2. 初始化模型参数3. 自定义初始化方法4. 共享模型参数小结本节将深入讲解如何访问和初始化模型参数,以及如何在多个层之间共享同一份模型参数。我们先定义含单隐藏层的多层感知机。我们使用默认方式初始化它的参数,并做一次前向计算。在这里我们从nn中导入了init模块,它包含了多种模型初始化方法。import torchfrom torch import nnfrom torch.nn import initnet = nn.Sequential(nn.Linear(4,

2020-08-03 12:33:52 279 19

原创 pytorch学习笔记(十五):模型构造

文章目录1. 继承Module类来构造模型2. Module的子类2.1 Sequential类2.2 ModuleList类2.3 ModuleDict类3. 构造复杂的模型小结这里我们介绍一种基于Module类的模型构造方法:它让模型构造更加灵活。1. 继承Module类来构造模型Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造本节开头提到的多层感知机。这里定义的MLP类重载了Module类的__init__函

2020-08-03 11:04:18 219 22

原创 pytorch学习笔记(十四):实战Kaggle比赛——房价预测

文章目录1. Kaggle比赛2. 获取和读取数据集3. 预处理数据4. 训练模型5. KKK折交叉验证6. 模型选择7. 预测并在Kaggle提交结果1. Kaggle比赛Kaggle是一个著名的供机器学习爱好者交流的平台。图3.7展示了Kaggle网站的首页。为了便于提交结果,需要注册Kaggle账号。我们可以在房价预测比赛的网页上了解比赛信息和参赛者成绩,也可以下载数据集并提交自己的预测结果。该比赛的网页地址是 https://www.kaggle.com/c/house-prices-adv

2020-08-02 17:12:10 960 32

原创 pytorch学习笔记(十三):Dropout

文章目录1. 方法2. 从零开始实现2.1 定义模型参数2.2 定义模型2.3 训练和测试模型3. 简洁实现小结除了前一节介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。1. 方法这里有一个单隐藏层的多层感知机。其中输入个数为4,隐藏单元个数为5,且隐藏单元hih_ihi​(i=1,…,5i=1, \ldots, 5i=1,…,5)的计算表达式为hi=ϕ(x1w1i+x2w2i+x3w3i+x4w4i+bi)h_i = \phi\left(x_1 w_{1i} +

2020-08-02 11:52:21 915 15

原创 pytorch学习笔记(十二):权重衰减

权重衰减等价于 L2L_2L2​ 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。我们先描述L2L_2L2​范数正则化,再解释它为何又称权重衰减。L2L_2L2​范数正则化在模型原损失函数基础上添加L2L_2L2​范数惩罚项,从而得到训练所需要最小化的函数。L2L_2L2​范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以3.

2020-08-02 10:13:41 1976 18

原创 pytorch学习笔记(十一):pytorch实现多层感知机

下面我们使用PyTorch来实现上一节中的多层感知机。首先导入所需的包或模块。import torchfrom torch import nnfrom torch.nn import initimport numpy as npimport syssys.path.append("..") import d2lzh_pytorch as d2l1. 定义模型隐藏层单元个数为256,并使用ReLU函数作为激活函数。num_inputs, num_outputs, num_hiddens

2020-08-01 13:11:46 1339 16

原创 pytorch学习笔记(十):MLP

文章目录1. 隐藏层2. 激活函数2.1 ReLU函数2.2 sigmoid函数2.3 tanh函数3 多层感知机4. 代码实现MLP4.1 获取和读取数据4.2 定义模型参数4.3 定义激活函数4.4 定义模型4.5 定义损失函数4.6 训练模型小结1. 隐藏层多层感知机(multilayer perceptron, MLP) 在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。图3.3展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐

2020-08-01 13:07:04 1865 13

原创 pytorch学习笔记(九):softmax回归的简洁实现

文章目录1. 获取和读取数据2. 定义和初始化模型3. softmax和交叉熵损失函数4. 定义优化算法5. 训练模型6. 总代码7.小结使用Pytorch实现一个softmax回归模型。首先导入所需的包或模块。import torchfrom torch import nnfrom torch.nn import initimport numpy as npimport syssys.path.append("..") import d2lzh_pytorch as d2l1. 获取和

2020-07-23 19:03:32 809 12

原创 pytorch学习笔记(八):softmax回归的从零开始实现

文章目录1. 获取和读取数据2. 初始化模型参数3. 实现softmax运算4. 定义模型5. 定义损失函数6. 计算分类准确率7. 训练模型8. 预测小结这一节我们来动手实现softmax回归。首先导入本节实现所需的包或模块。import torchimport torchvisionimport numpy as npimport syssys.path.append("..") # 为了导入上层目录的d2lzh_pytorchimport d2lzh_pytorch as d2l1.

2020-07-23 13:26:23 1636 24

原创 pytorch学习笔记(七):图像分类数据集(Fashion-MNIST)

前言图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2](这个数据集也比较小,只有几十M,没有GPU的电脑也能吃得消)。本节我们将使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:torchvision.datasets: 一些加载数据的函数及常用

2020-07-23 11:59:26 598 26

原创 pytorch学习笔记(六):softmax回归

文章目录前言1. 分类问题2. softmax回归模型3. 单样本分类的矢量计算表达式4. 小批量样本分类的矢量计算表达式5. 交叉熵损失函数6. 模型预测及评价小结前言模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练。本节以softmax回归模型为例,介绍神经网络中的分类模型。1. 分类问题让我们考虑一个简单的图

2020-07-20 12:43:01 472 13

原创 sklearn学习笔记(一):数据预处理

文章目录1.缺失值处理2. 数据的规范化2.1 缩放规范化2.1.1 最大值-最小值缩放2.1.2 最大绝对值缩放2.1.3 自定义缩放区间2.2 标椎化2.3 范数规范化3. 非线性变换3.1 二分类变换3.2 分位数变换1.缺失值处理这里使用sklearn.impute库中的SimpleImputer模块进行缺失值的处理import numpy as npfrom sklearn.impute import SimpleImputer'''参数: missing_values: n

2020-07-19 23:56:13 936 43

原创 pytorch学习笔记(五):线性回归的简洁实现

文章目录前言1 生成数据集2 读取数据3 定义模型4 初始化模型参数5 定义损失函数6 定义优化算法7 训练模型小结前言随着深度学习框架的发展,开发深度学习应用变得越来越便利。实践中,我们通常可以用比上一节更简洁的代码来实现同样的模型。在本节中,我们将介绍如何使用PyTorch更方便地实现线性回归的训练。1 生成数据集我们生成与上一节中相同的数据集。其中features是训练数据特征,labels是标签。num_inputs = 2num_examples = 1000true_w = [2,

2020-07-19 13:38:42 401 18

原创 pytorch学习笔记(四):线性回归从零开始实现

文章目录前言1 生成数据集2 读取数据3 初始化模型参数4 定义模型5 定义损失函数6 定义优化算法7 训练模型小结前言在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用Tensor和autograd来实现一个线性回归的训练。首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。%matplotlib inlin

2020-07-19 13:33:34 646 18

原创 pytorch学习笔记(三):线性回归

文章目录前言3.1.1 线性回归的基本要素3.1.1.1 模型定义3.1.1.2 模型训练(1) 训练数据(2) 损失函数(3) 优化算法3.1.1.3 模型预测3.1.2 线性回归的表示方法3.1.2.1 神经网络图3.1.2.2 矢量计算表达式小结前言线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。

2020-07-19 13:31:01 313 16

原创 LeetCode Week 4:第 31 ~ 40 题

文章目录31. 下一个排列2. 最长有效括号34. 在排序数组中查找元素的第一个和最后一个位置35. 搜索插入位置36. 有效的数独37. 解数独38. 外观数列39. 组合总和40. 组合总和 II31. 下一个排列题目描述实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。必须原地修改,只允许使用额外常数空间。以下是一些例子,输入位于左侧列,其相应输出位于右侧列。1,2,3 → 1,3,

2020-07-18 13:04:06 1728 44

原创 pytorch学习笔记(二):自动求梯度

文章目录前言1 概念2 Tensor3 梯度前言在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autograd包来进行自动求梯度的有关操作。1 概念Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计

2020-07-17 23:46:11 829 14

原创 pytorch学习笔记(一):Tensor(张量)

在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和Num

2020-07-17 23:16:12 807 15

原创 LeetCode Week 3:第 21 ~ 30 题

文章目录21. 合并两个有序链表22. 括号生成23. 合并K个排序链表24. 两两交换链表中的节点25. K 个一组翻转链表26. 删除排序数组中的重复项27. 移除元素28. 实现 strStr()29. 两数相除30. 串联所有单词的子串21. 合并两个有序链表题目描述将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。示例:输入:1->2->4, 1->3->4输出:1->1->2->3->4-

2020-07-16 16:10:05 2292 19

原创 深度学习入门笔记(六):误差反向传播算法
原力计划

误差反向传播法——能够高效计算权重参数的梯度的方法。要正确理解误差反向传播法,有两种方法: 一种是基于数学式;另一种是基于计算图(computational graph)。前者是比较常见的方法,机器学习相关的图书中多数都是以数学式为中心展开论述的。因为这种方法严密且简洁,所以确实非常合理,但如果一上来就围绕数学式进行探讨,会忽略一些根本的东西,止步于式子的罗列。因此,本章希望大家通过计算图,直观地理解误差反向传播法。然后,再结合实际的代码加深理解,相信大家一定会有种“原来如此!”的感觉。

2020-07-15 21:37:04 2924 39

原创 深度学习入门笔记(五):神经网络的学习
原力计划

本章的主题是神经网络的学习。这里所说的“学习”是指从训练数据中自动获取最优权重参数的过程。本章中,为了使神经网络能进行学习,将导入损失函数这一指标。而学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。为了找出尽可能小的损失函数的值,本章我们将介绍利用了函数斜率的梯度法

2020-07-11 13:07:40 2635 22

原创 深度学习入门笔记(四):神经网络
原力计划

上一个笔记我们学习了感知机。对于复杂的函数,感知机也隐含着能够表示它的可能性。即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输人与输出的权重,现在还是由人工进行的。神经网络的出现就是为了解决刚才的坏消息。具体地讲,神经网络的一个重要性质是它可以**自动地从数据中学习到合适的权重参数**。本章中,我们会先介绍神经网络的概要,然后重点关注神经网络进行识别时的处理。在下一章中,我们将了解如何从数据中学习权重参数。

2020-07-09 22:09:33 3936 45

原创 深度学习入门笔记(三):感知机
原力计划

本章通俗易懂,容易理解,没有太多很难理解的数学公式,适合数学水平一般、零基础入门学习的学生,同时本文章通过python原生代码来实现感知机,从底层原理去深入了解并熟练掌握,只要学过python基础的东西就都能看懂。感知机是由美国学者FrankRosenblatt在1957年提出来的。为何我们现在还要学习这一很久以前就有的算法呢?因为感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一一种重要思想。文章目录1. 什么是感知机2. 简单逻辑电路2.1 与

2020-07-09 00:16:50 2950 19

提示
确定要删除当前文章?
取消 删除