一:背包问题
给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。
问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?
例题
四个物体,背包容量为8.
i | 1 | 2 | 3 | 4 |
---|---|---|---|---|
w(体积) | 2 | 3 | 4 | 5 |
v(价值) | 3 | 4 | 5 | 6 |
二:思考
面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。
首先要声明一个 大小为 m[n][c] 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为 j 时所能获得的最大价值 ,
那么我们可以很容易分析得出 m[i][j] 的计算方法,
(1). j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿
m[ i ][ j ] = m[ i-1 ][ j ]
2). j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。
如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,
背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。
如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)
究竟是拿还是不拿,自然是比较这两种情况那种价值最大。即:
if(j>=w[i])
m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
else
m[i][j]=m[i-1][j];
下面创建二维列表依次遍历每一个物品就好了
i/j | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
2 | 0 | 0 | 3 | 4 | 4 | 7 | 7 | 7 | 7 |
3 | 0 | 0 | 3 | 4 | 5 | 7 | 8 | 9 | 9 |
4 | 0 | 0 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
#include<stdio.h>
#include<math.h>
#include<string.h>
int max(int a,int b)
{
if(a>b)return a;
else return b;
}
int main()
{
int t,a[100],b[100],c[100][100],n,w;
scanf("%d",&t);
while(t--)
{
memset(c,0,sizeof(c));
scanf("%d%d",&n,&w);
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i],&b[i]);//a[i]表示体积,b[i]表示价值
for(int i=1;i<=n;i++){
for(int j=1;j<=w;j++){
if(j>=a[i])
c[i][j]=max(c[i-1][j],c[i-1][j-a[i]]+b[i]);
else
c[i][j]=c[i-1][j];
}
}
printf("%d\n",c[n][w]);
}
}
此外,01背包问题还可以通过不断重复利用一个数组来实现,代码如下:
int dp[maxn+5];
void solve()
{
for(int i=0;i<n;i++){
for(int j=W;j>=w[i];j--)
dp[j]=max(dp[j],dp[j-w[i]+v[i]);
}
printf("%d\n",dp[W]);
}