完全背包问题

问题描述

一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],每个物品都有无限多件,现在往背包里面装东西,怎么装能使背包的内物品价值最大?

输入样例

3 7
3 4 2
4 5 3

输出样例

10

解析:完全背包问题中,物品无限多件,只要背包没满,就可以一直添加

状态转移方程为:

dp[ i+1 ][ j ] = max(dp[ i ][ j-k*weight[ i ] ] +k*value[ i ],dp[ i+1 ][ j ])
代码如下:

int dp[manx+5][maxn+5]
void solve()
{
    for(int i=0;i<n;i++){
        for(int j=0;j<=w;j++){
            for(int k=0;k*w[i]<=j;k++){
                dp[i+1][j]=max(dp[i+1][j],dp[i][j-k*w[i]+k*v[i]);
            }
        }
    }
    printf("%d\n",dp[n][w]);
}

这里用到了3重循环,关于k的循环最坏的可能从0循环到W,所以算法的复杂度为O(n * W*W),这样不够好,我们可以找一下算法中多余的计算可以得出状态转移式:
dp[ i+1 ] [ j ]=max(dp[ i ] [ j ],dp[ i+1 ][ j-w[i] ]+v[ i ])
这样就省去了关于k的循环,代码如下:

int dp[manx+5][maxn+5]
void solve()
{
    for(int i=0;i<n;i++){
        for(int j=0;j<=w;j++){
            if(j<w[i])dp[i+1][j]=dp[i][j];
            else dp[i+1][j]=max(dp[i][j],dp[i+1][j-w[i]+v[i]);
        }
    }
    printf("%d\n",dp[n][w]);
}

此外,还可以用一维数组来做

int dp[maxn+5];
void solve()
{
    for(int i=0;i<n;i++){
        for(int j=w[i];j<=W;j++){
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
    printf("%d\n",dp[W]);
}

AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#define maxn 100
using namespace std;
int n,W;
int v[maxn+5],w[maxn+5];
int dp[maxn+5];
void solve()
{
    for(int i=0;i<n;i++){
        for(int j=w[i];j<=W;j++){
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
    printf("%d\n",dp[W]);
}
int main(void)
{
    scanf("%d%d",&n,&W);
    memset(dp,0,sizeof(dp));
    for(int i=0;i<n;i++)
        scanf("%d",&w[i]);
    for(int i=0;i<n;i++)
        scanf("%d",&v[i]);
    solve();
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完全背包问题是一个经典的动态规划问题,它与01背包问题类似,但有一个重要的区别。在完全背包问题中,每种物品可以选择无限次放入背包中,而在01背包问题中,每种物品只能选择一次放入背包中。 解决完全背包问题的一种常见方法是将其转化为01背包问题。根据引用[3]中的思路,我们可以将每种物品拆分成多件只能选0件或1件的01背包中的物品。具体做法是,对于第i种物品,我们将其拆分成⌊V /Ci⌋件费用和价值均不变的物品,然后求解这个01背包问题。 在求解过程中,我们需要确定状态变量(函数)和状态转移方程。状态变量可以定义为dp[i][j],表示前i种物品放入容量为j的背包中所能获得的最大价值。状态转移方程可以表示为dp[i][j] = max(dp[i-1][j-k*Ci] + k*Wi),其中k表示第i种物品的数量。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的价值为0;dp[i][0] = 0,表示背包容量为0时,无法放入任何物品。 通过以上的分析,我们可以得到完全背包问题的动态规划解法。具体的代码实现和优化可以参考引用[1]和引用[2]中的内容。 总结起来,完全背包问题是一个经典的动态规划问题,可以通过将其转化为01背包问题来求解。在求解过程中,需要确定状态变量和状态转移方程,并考虑边界条件。通过动态规划的方法,可以高效地解决完全背包问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值