题目描述
Today HH finds a non-decreasing sequence(a
1,a
2....a
n,a
i≤a
i+1), he thinks it's not beautiful so he wants to make it beautiful.
To make it, HH will choose exactly one number and move it forward at least k steps(i.e. you can move a
i to a
j if k≤i−j), and then he defines the beautiful value F(n) as
HH asks you to calculate max(F(n))
输入描述:
The first line contains an positive integer T(1≤T≤10), represents there are T test cases.For each test case:The first line contains two positive integers n,k(1≤n≤10 5,1≤k<n),the length of the sequence ,the least steps you need to move.The second line contains n integers a 1,a 2…a n(1≤a i≤10 8) - the sequence.
输出描述:
For each test case, you should output the max F(n).
示例1
说明
In the first example, you can move the fifth number 4 for 3 steps and make the sequence become [4,1,1,3,5], then the beautiful value is 4×1+1×2+1×3+3×4+5×5=46.
You can also move the fifth number to make it become [1,5,1,3,4], the beautiful value is also 46.
In the second example, you can move the fifth number 5 for 2 steps and make the sequence become [1,1,5,3,4]
In the second example, you can move the second number 1 for 1 steps and then the sequence is still [1,1,3,4,5]
备注:
scanf is commended。
思路
1. 首先定义一个初始和sum=a[i]i+a[i+1](i+1)....(i=1~n)
2. 答案可以由初始的sum减去一个值M得到
3. 通过模拟发现这个值为M=a[i]k-(a[i-k]+a[i-k+1]+...+a[i-1]),共k个数*
4. 使用前缀和、枚举模拟找最小的M
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#define ll long long
using namespace std;
int main(){
int T;
cin>>T;
while(T--){
int n,k;
cin>>n>>k;
vector<ll> arr(n+1,0);
vector<ll> sum(n+1,0);
ll ans=0;
for(int i=1;i<=n;i++)
{
cin>>arr[i];
ans+=(i*arr[i]);
sum[i]=sum[i-1]+arr[i];
}
ll mi=1e13; //开大点不然WA
for(int i=n;i>=k+1;i--)
{
ll s=arr[i]*k-(sum[i-1]-sum[i-1-k]); //移动产生的差值
mi=min(mi,s);
}
cout<<ans-mi<<endl;
}
return 0;
}