畅通工程
题目链接:http://acm.ocrosoft.com/problem.php?cid=1672&pid=6
题目描述
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
输入
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
输出
对每个测试用例,在1行里输出最少还需要建设的道路数目。
样例输入
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
样例输出
1
0
2
998
思路:完完全全的并查集,建立完所有的根节点以后,只要找有几个城市的根节点为自己就sum++,最后输出sum-1即可
代码:
#include<bits/stdc++.h>
using namespace std;
int n, m;
int father[1005];
int find(int x)//递归找根结点
{
if (father[x] != x)father[x] = find(father[x]);
return father[x];
}
int main()
{
while (cin>>n)
{
memset(father, 0, sizeof(father));//重置数组
if (n == 0)return 0;//城市数量为0,直接结束程序
else
{
cin >> m;
if (m == 0)
{
cout << n - 1 << endl;//m为0,易得结果为n-1
}
else
{
for (int i = 1; i <= n; i++)
{
father[i] = i;//初始化自己的根节点为自己
}
for (int i = 1; i <= m; i++)
{
int x, y;
cin >> x >> y;
int fx, fy;
fx = find(x), fy = find(y);//找该城市的根节点
if (fx != fy)//若两者根节点不相同,覆盖掉
{
father[fy] = fx;
}
}
int sum = 0;
for (int i = 1; i <= n; i++)
{
if (father[i] == i)sum++;//要是有一个城市的根节点为自己,那就是说明没连到一起,sum++
}
cout << sum - 1 << endl;
}
}
}
}