[机器学习] K-means 客户分群实战

K-means

概念

K-means算法是一种无监督学习的聚类算法,也叫做K均值聚类,通过均值的计算,对样本分为K个不同的簇。
在这里插入图片描述

距离度量

使用K-means算法时,样本的距离度量必须满足一定的条件:
在这里插入图片描述
对样本属性的距离度量计算时,可以采取不同的距离度量公式,
在这里插入图片描述
k-means一般采用p=2时,也就是欧式距离。

迭代计算

在进行聚类时,要先确定簇的个数k,然后进行下面操作:

  1. 指定k个簇的初始化中心C1,C2,C3…Ck。 ( b )
  2. 求每个样本到各个中心的距离,并将其划分到距离最小的中心的簇中。( c )
  3. 对划分的每个簇重新计算簇中心。( d )
  4. 如果簇中心发生变化则回到第2步 ( e ),否则达到迭代次数或者中心变化幅度过低可认为完成聚类退出。( f )
    在这里插入图片描述
    在这里插入图片描述

聚类评估方法

簇内平方和

在这里插入图片描述
簇内平方和会随着k的增加而降低,所以对于k的选取则需要采取一定的策略,肘部法则
在这里插入图片描述

轮廓系数

在这里插入图片描述

特点

在这里插入图片描述

使用

在这里插入图片描述
在这里插入图片描述

实战开发

在这里插入图片描述
下面介绍需要使用到的工具:

华为云 ModelArts

在这里插入图片描述

Jupyter Notebook

在这里插入图片描述

OBS对象存储

在这里插入图片描述
在这里插入图片描述

实操

在这里插入图片描述

环境搭建

在这里插入图片描述

数据同步

在这里插入图片描述

数据导入

在这里插入图片描述

数据预处理

在这里插入图片描述

K值的选择

在这里插入图片描述

模型的构建

在这里插入图片描述

模型的使用

在这里插入图片描述

结果可视化

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值