Codeforces Round #550 (Div. 3)(F题,图论)

本文探讨了一种算法,用于解决图论中的问题——如何在无向图中为每条边指定方向,使得最终形成的有向图不包含长度大于等于2的路径。文章通过深度优先搜索实现边的方向设定,并确保不会出现冲突。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

F. Graph Without Long Directed Paths

题目链接:http://codeforces.com/contest/1144/problem/F
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output
You are given a connected undirected graph consisting of n vertices and m edges. There are no self-loops or multiple edges in the given graph.
You have to direct its edges in such a way that the obtained directed graph does not contain any paths of length two or greater (where the length of path is denoted as the number of traversed edges).

Input

The first line contains two integer numbers n and m (2≤n≤2⋅105, n−1≤m≤2⋅105) — the number of vertices and edges, respectively.
The following m lines contain edges: edge i is given as a pair of vertices ui, vi (1≤ui,vi≤n, ui≠vi). There are no multiple edges in the given graph, i. e. for each pair (ui,vi) there are no other pairs (ui,vi) and (vi,ui) in the list of edges. It is also guaranteed that the given graph is connected (there is a path between any pair of vertex in the given graph).

Output

If it is impossible to direct edges of the given graph in such a way that the obtained directed graph does not contain paths of length at least two, print “NO” in the first line.
Otherwise print “YES” in the first line, and then print any suitable orientation of edges: a binary string (the string consisting only of ‘0’ and ‘1’) of length m. The i-th element of this string should be ‘0’ if the i-th edge of the graph should be directed from ui to vi, and ‘1’ otherwise. Edges are numbered in the order they are given in the input.

Example
input

6 5
1 5
2 1
1 4
3 1
6 1

output

YES
10100

Note

The picture corresponding to the first example:
在这里插入图片描述
And one of possible answers: 在这里插入图片描述

题目大意:

给你无向的图,让你给图的边决定方向。获得的有向图不包含长度为2或更大的任何路径。也就是一个点,不能同时有入度和出度。

题目思路:

建立一个邻接表,然后边dfs,看成双向图,每次遍历顺便赋值0或1,如果冲突了,就输出NO。

代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
struct node{
   int v,next;
}e[400005];
int head[200005],cnt=0;
void add(int u,int v){
  e[cnt]={v,head[u]},head[u]=cnt++;
}
int n,m;
int col[200005],flag;
int a[200005],b[200005];
void dfs(int u,int f){
  col[u]=f;
  for(int i=head[u];~i;i=e[i].next){
    if(col[e[i].v]==0){
         dfs(e[i].v,f^1);
    }
    else if(col[e[i].v]==f) flag=0;
  }
}
int main(){
    scanf("%d %d",&n,&m);
    memset(head,-1,sizeof(head));
    for(int i=1;i<=m;i++){
        scanf("%d %d",&a[i],&b[i]);
        add(a[i],b[i]);
        add(b[i],a[i]);
    }
    flag=1;
    for(int i=1;i<=n;i++){
        if(!col[i]) dfs(i,2);
    }
        if(flag){
            puts("YES");
          for(int i=1;i<=m;i++){
            if(col[a[i]]==2) cout<<"1";
            else cout<<"0";
          }
          cout<<" "<<endl;
        }
        else{
            cout<<"NO"<<endl;
        }
}
### 关于 Codeforces Round 839 Div 3目与解答 #### 目概述 Codeforces Round 839 Div 3 是一场面向不同编程水平参赛者的竞赛活动。这类比赛通常包含多个难度层次分明的问,旨在测试选手的基础算法知识以及解决问的能力。 对于特定的比赛问及其解决方案,虽然没有直接提及 Codeforces Round 839 Div 3 的具体细节[^1],但是可以根据以往类似的赛事结构来推测该轮次可能涉及的内容类型: - **输入处理**:给定一组参数作为输入条件,这些参数定义了待解决的任务范围。 - **逻辑实现**:基于输入构建满足一定约束条件的结果集。 - **输出格式化**:按照指定的方式呈现最终答案。 考虑到提供的参考资料中提到的其他几场赛事的信息[^2][^3],可以推断出 Codeforces 圆桌会议的一般模式是围绕着组合数学、图论、动态规划等领域展开挑战性的编程任务。 #### 示例解析 以一个假设的例子说明如何应对此类竞赛中的一个问。假设有如下描述的一个简单排列生成问: > 对于每一个测试案例,输出一个符合条件的排列——即一系列数字组成的集合。如果有多种可行方案,则任选其一给出即可。 针对上述要求的一种潜在解法可能是通过随机打乱顺序的方式来获得不同的合法排列形式之一。下面是一个 Python 实现示例: ```python import random def generate_permutation(n, m, k): # 创建初始序列 sequence = list(range(1, n + 1)) # 执行洗牌操作得到新的排列 random.shuffle(sequence) return " ".join(map(str, sequence[:k])) # 测试函数调用 print(generate_permutation(5, 2, 5)) # 输出类似于 "4 1 5 2 3" ``` 此代码片段展示了怎样创建并返回一个长度为 `k` 的随机整数列表,其中元素取自 `[1..n]` 这个区间内,并且保证所有成员都是唯一的。需要注意的是,在实际比赛中应当仔细阅读官方文档所提供的精确规格说明,因为这里仅提供了一个简化版的方法用于解释概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值