Codeforces Round #550 (Div. 3)(F题,图论)

F. Graph Without Long Directed Paths

题目链接:http://codeforces.com/contest/1144/problem/F
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output
You are given a connected undirected graph consisting of n vertices and m edges. There are no self-loops or multiple edges in the given graph.
You have to direct its edges in such a way that the obtained directed graph does not contain any paths of length two or greater (where the length of path is denoted as the number of traversed edges).

Input

The first line contains two integer numbers n and m (2≤n≤2⋅105, n−1≤m≤2⋅105) — the number of vertices and edges, respectively.
The following m lines contain edges: edge i is given as a pair of vertices ui, vi (1≤ui,vi≤n, ui≠vi). There are no multiple edges in the given graph, i. e. for each pair (ui,vi) there are no other pairs (ui,vi) and (vi,ui) in the list of edges. It is also guaranteed that the given graph is connected (there is a path between any pair of vertex in the given graph).

Output

If it is impossible to direct edges of the given graph in such a way that the obtained directed graph does not contain paths of length at least two, print “NO” in the first line.
Otherwise print “YES” in the first line, and then print any suitable orientation of edges: a binary string (the string consisting only of ‘0’ and ‘1’) of length m. The i-th element of this string should be ‘0’ if the i-th edge of the graph should be directed from ui to vi, and ‘1’ otherwise. Edges are numbered in the order they are given in the input.

Example
input

6 5
1 5
2 1
1 4
3 1
6 1

output

YES
10100

Note

The picture corresponding to the first example:
在这里插入图片描述
And one of possible answers: 在这里插入图片描述

题目大意:

给你无向的图,让你给图的边决定方向。获得的有向图不包含长度为2或更大的任何路径。也就是一个点,不能同时有入度和出度。

题目思路:

建立一个邻接表,然后边dfs,看成双向图,每次遍历顺便赋值0或1,如果冲突了,就输出NO。

代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
struct node{
   int v,next;
}e[400005];
int head[200005],cnt=0;
void add(int u,int v){
  e[cnt]={v,head[u]},head[u]=cnt++;
}
int n,m;
int col[200005],flag;
int a[200005],b[200005];
void dfs(int u,int f){
  col[u]=f;
  for(int i=head[u];~i;i=e[i].next){
    if(col[e[i].v]==0){
         dfs(e[i].v,f^1);
    }
    else if(col[e[i].v]==f) flag=0;
  }
}
int main(){
    scanf("%d %d",&n,&m);
    memset(head,-1,sizeof(head));
    for(int i=1;i<=m;i++){
        scanf("%d %d",&a[i],&b[i]);
        add(a[i],b[i]);
        add(b[i],a[i]);
    }
    flag=1;
    for(int i=1;i<=n;i++){
        if(!col[i]) dfs(i,2);
    }
        if(flag){
            puts("YES");
          for(int i=1;i<=m;i++){
            if(col[a[i]]==2) cout<<"1";
            else cout<<"0";
          }
          cout<<" "<<endl;
        }
        else{
            cout<<"NO"<<endl;
        }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值