KMP
KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题(或者是出现次数等的问题)。说简单点就是我们平时常说的关键字搜索。
首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?
上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)
如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道主串前面只有一个A? 因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可。
// 暴力破解
int index(char *s ,char *t){
int lens = strlen(s) ;
int lent = strlen(t) ;
int i = 0 , j = 0 ;
while(i<lens && j<lent){
if(s[i]==t[j]){
i++;
j++;
}
else{
i = i -j + 1 ;
j=0 ;
}
}
if(j== lent){
return i-j ;
}
else{
return -1 ;
}
}
面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但
假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。
大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”
整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪?
接下来我们自己来发现j的移动规律:
如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:
如下图也是一样的情况:
可以把j指针移动到第2位,因为前面有两个字母是一样的:
至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的。
如果用数学公式来表示是这样的
P[0 ~ k-1] == P[j-k ~ j-1]
这个相当重要,如果觉得不好记的话,可以通过下图来理解:
弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。
因为:
当T[i] != P[j]时
有T[i-j ~ i-1] == P[0 ~ j-1]
由P[0 ~ k-1] == P[j-k ~ j-1]
必然:T[i-k ~ i-1] == P[0 ~ k-1]
公式很无聊,能看明白就行了,不需要记住。
这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。
好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。
void GetNext(char *p, int *next)// 模式串
{
int plen = strlen(p) ;
next[0] = -1 ;
int k = -1 ;
int j = 0 ;
while(j< plen-1)
{
// p[k]表示前缀 , p[j]表示后缀 ;
if(k==-1 || p[j] == p[k])
{
k++;
j++;
next[j] = k ;
}
else
{
k = next[k] ;
}
}
}
这个版本的求next数组的算法应该是流传最广泛的,代码是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?
好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置。
先来看第一个:当j为0时,如果这时候不匹配,怎么办?
像上图这种情况,j已经在最左边了,不可能再移动了, 这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。
如果是当j为1的时候呢?
显然,j指针一定是后移到0位置的。 因为它前面也就只有这一个位置了~~~
下面这个是最重要的,请看如下图:
请仔细对比这两个图。
我们发现一个规律:
当P[k] == P[j]时,
有next[j+1] == next[j] + 1
其实这个是可以证明的:
因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)
这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。
即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。
这里的公式不是很好懂,还是看图会容易理解些。
那如果P[k] != P[j]呢?比如下图所示:
像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。
现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。
最后,来看一下上边的算法存在的缺陷。来看第一个例子:
显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]
所以下一步我们应该是把j移动到第1个元素咯:
不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了, 那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。
显然,发生问题的原因在于P[j] == P[next[j]]。
所以我们也只需要添加一个判断条件即可:
void GetNextval(char* p, int next[])
{
int pLen = strlen(p);
next[0] = -1;
int k = -1;
int j = 0;
while (j < pLen )
{
//p[k]表示前缀,p[j]表示后缀
if (k == -1 || p[j] == p[k])
{
j++;
k++;
//较之前next数组求法,改动在下面4行
if (p[j] != p[k])
next[j] = k; //之前只有这一行
else
//因为不能出现p[j] = p[ next[j ]],所以当出现时需要继续递归,k = next[k] = next[next[k]]
next[j] = next[k];
}
else
{
k = next[k];
}
}
}
下面是一些例题和代码实现:
计算匹配串在模式串中第一次出现的位置:
https://vjudge.net/contest/298074#problem/B
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAX=10010;
typedef long long ll;
int s[MAX*100],p[MAX],nexts[MAX];
int plen,slen;
void getNEXT(int *p){
nexts[0]=-1;
int k=-1,j=0;
while(j<plen){
if(k==-1||p[j]==p[k]){
k++;
j++;
if(p[j]!=p[k]) nexts[j]=k;
else nexts[j]=nexts[k];
}
else k=nexts[k];
}
}
int kmp(int*s,int*p){
int i=0,j=0;
getNEXT(p);
while(i<slen&&j<plen){
if(j==-1||s[i]==p[j]){
i++;
j++;
}
else{
j=nexts[j];
}
}
if(j==plen)return i-j+1;
else return -1;
}
int main(){
int n;
cin>>n;
while(n--){
cin>>slen>>plen;
for(int i=0;i<slen;i++) scanf("%d",&s[i]);
for(int i=0;i<plen;i++) scanf("%d",&p[i]);
cout<<kmp(s,p)<<endl;
}
}
计算匹配串在模式串中出现的次数:
https://vjudge.net/contest/298074#problem/A
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAX=10010;
typedef long long ll;
int nexts[MAX];
char s[MAX*100],p[MAX];
void getNEXT(char*p){
int plen=strlen(p);
nexts[0]=-1;
int k=-1;
int j=0;
while(j<plen){
if(k==-1||p[j]==p[k]){
k++;
j++;
nexts[j]=k;
}
else k=nexts[k];
}
}
int kmp(char*s,char*p){
int i=0,j=0;
int num=0;
getNEXT(p);
int slen=strlen(s);
int plen=strlen(p);
while(i<slen){
if(j==-1||s[i]==p[j]){
i++;
j++;
if(j==plen) {num++;} //相比上面那个代码,主要变动的是这里
}
else{
j=nexts[j];
}
}
return num;
}
int main(){
int n;
cin>>n;
while(n--){
cin>>p>>s;
int pos=kmp(s,p);
cout<<pos<<endl;
}
return 0;
}
扩展KMP
问题定义: 给定两个字符串S和T(长度分别为n和m),下标从0开始,定义extend[i]等于S[i]…S[n-1]与T的最长相同前缀的长度,求出所有的 extend[i] 。举个例子,看下表:
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
S | a | a | a | a | a | b | b | b |
T | a | a | a | a | a | c | ||
extend[i] | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
为什么说这是KMP算法的扩展呢?显然,如果在S的某个位置i有extend[i]等于m,则可知在S中找到了匹配串T,并且匹配的首位置是i。而且,扩展KMP算法可以找到S中所有T的匹配。 接下来具体介绍下这个算法。
(1)
如上图,假设当前遍历到S串位置i,即extend[0]…extend[i - 1]这i个位置的值已经计算得到。设置两个变量,a和p。p代表以a为起始位置的字符匹配成功的最右边界,也就是"p = 最后一个匹配成功位置 + 1"。相较于字符串T得出,S[a…p)等于T[0…p-a)。
(2)
再定义一个辅助数组int next[],其中next[i]含义为:T[i]…T[m - 1]与T的最长相同前缀长度,m为串T的长度。举个例子:
i | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
T | a | a | a | a | a | c |
next[i] | 6 | 4 | 3 | 2 | 1 | 0 |
(3)
S[i]对应T[i - a],如果i + next[i - a] < p,如上图,三个椭圆长度相同,根据next数组的定义,此时extend[i] = next[i - a]。
(4)
如果i + next[i - a] == p呢?如上图,三个椭圆都是完全相同的,S[p] != T[p - a]且T[p - i] != T[p - a],但S[p]有可能等于T[p - i],所以我们可以直接从S[p]与T[p - i]开始往后匹配,加快了速度。
如果i + next[i - a] > p呢?那说明S[i…p)与T[i-a…p-a)相同,注意到S[p] != T[p - a]且T[p - i] == T[p - a],也就是说S[p] != T[p - i],所以就没有继续往下判断的必要了,我们可以直接将extend[i]赋值为p - i。
(5)最后,就是求解next数组。我们再来看下next[i]与extend[i]的定义:
- next[i]: T[i]…T[m - 1]与T的最长相同前缀长度;
- extend[i]: S[i]…S[n - 1]与T的最长相同前缀长度。
恍然大悟,求解next[i]的过程不就是T自己和自己的一个匹配过程嘛,下面直接看代码。
#include <bits/stdc++.h>
using namespace std;
char p[10005],s[1000005];
int nexts[100005],extend[1000005];
void getNEXT(char*p,int&plen,int *nexts){
int a=0,k=0;
nexts[0]=plen;
for(int i=1;i<plen;i++){
if(i>=k||i+nexts[i-a]>=k){
if(i>=k) k=i;
while(k<plen&&p[k]==p[k-i])
k++;
nexts[i]=k-i;
a=i;
}
else
nexts[i]=nexts[i-a];
}
}
void extendkmp(char*s,int&slen,char*p,int&plen,int *extend, int *next){
int a=0,k=0;
getNEXT(p,plen,next);
for(int i=0;i<slen;i++){
if(i>=k||i+nexts[i-a]>=k){
if(i>=k) k=i;
while(k<slen&&k-i<plen&&s[k]==p[k-i])
k++;
extend[i]=k-i;
a=i;
}
else
extend[i]=nexts[i-a];
}
}
int main(){
int slen,plen;
while(cin>>s>>p){
slen=strlen(s);
plen=strlen(p);
extendkmp(s,slen,p,plen,extend,nexts);
cout<<"next: ";
for(int i=0;i<plen;i++)
cout<<nexts[i]<<" ";
cout<<"\nxetend: ";
for(int i=0;i<slen;i++)
cout<<extend[i]<<" ";
cout<<endl<<endl;
}
}
此博客借鉴于 https://segmentfault.com/a/1190000008663857 (大佬博客)。