心之所向,素履以往;生如逆旅,一苇以航
3月15日接到16、17两天连续选拔赛的消息的时候整个人是慌的,因为从开学到现在都没有怎么写过代码。那晚连散人直播《最强大~脑》都不看了,在宿舍里焦躁地徘徊,一直跟小姐姐说我不行的。最后熬夜又刷了PAT上几道题试图平复心情。
3月16日上午我整理了《All Things About STL》这篇博文,来复习STL基础的操作类型。时间有限,也没能好好看完。
和学姐一起走到科技楼的时候,我一遍又一遍想不要害怕,得之我幸,失之我命,水平决定一切。但比赛开始的时候我还是手忙脚乱,不断出错,而且浏览器似乎有些奇奇怪怪的问题,动不动就崩。等我写完第一题的时候,已经排到了三四十名的位置。换在平时训练赛,这是完全不可能的事情。好在PAT机制下不算错误率和时间,所以一开始的失利并没有太影响到我。之后每写完一题就前进一些,到第八题写完,已经回到第五差不多的位置了。
最后的成绩:
接下来带来题解,前十题我会用自己的方法(+大佬做法)讲,后五题我用大佬做法讲(+教泥萌怎么蒙)。
天梯赛选拔Day1
7-1 到底有多二 (15 分)
一个整数“犯二的程度”定义为该数字中包含2的个数与其位数的比值。如果这个数是负数,则程度增加0.5倍;如果还是个偶数,则再增加1倍。例如数字-13142223336是个11位数,其中有3个2,并且是负数,也是偶数,则它的犯二程度计算为:3/11×1.5×2×100%,约为81.82%。本题就请你计算一个给定整数到底有多二。
输入格式:
输入第一行给出一个不超过50位的整数N。
输出格式:
在一行中输出N犯二的程度,保留小数点后两位。
输入样例:
-13142223336
输出样例:
81.82%
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
先阐明一个小学数学老师经常强调的点:x增加0.5倍 == x * 1.5;x增加1倍 == x * 2(well,这里应该也不会有人错)。
单纯找2的话只需要把数据当成字符串读入,寻找2的个数;由于题目同时要求判断是否负数和偶数,还需要对字符串首位和末位进行判断。
窝的代码如下:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
//ios::sync_with_stdio(false);
string s;
cin>>s;
int ans=0,flag1=0,flag2=0;
int n=s.size();
for(int i=0;i<s.size();i++)
{
if(s[i]=='-')
{
flag1=1;
n--;
continue;
}
if(s[i]=='2')
ans++;
if(i==s.size()-1&&(s[i]-'0')%2==0)
flag2=1;
}
//cout<<ans<<" "<<n<<endl;
double m=ans*100.0/n;
//cout<<m<<endl;
if(flag1==1)
m*=1.5;
if(flag2==1)
m*=2;
printf("%.2f",m);
cout<<"%"<<endl;
return 0;
}
有一点需要额外注意,如果取消流同步(ios::sync_with_stdio(false))了以后输出千万不能cout和printf混用,不然…答案全部错误。刚开始吓傻窝了,还好从前遇到过,还请教过学长萌QWQ
7-2 大笨钟 (10 分)
微博上有个自称“大笨钟V”的家伙,每天敲钟催促码农们爱惜身体早点睡觉。不过由于笨钟自己作息也不是很规律,所以敲钟并不定时。一般敲钟的点数是根据敲钟时间而定的,如果正好在某个整点敲,那么“当”数就等于那个整点数;如果过了整点,就敲下一个整点数。另外,虽然一天有24小时,钟却是只在后半天敲1~12下。例如在23:00敲钟,就是“当当当当当当当当当当当”,而到了23:01就会是“当当当当当当当当当当当当”。在午夜00:00到中午12:00期间(端点时间包括在内),笨钟是不敲的。
下面就请你写个程序,根据当前时间替大笨钟敲钟。
输入格式:
输入第一行按照hh:mm的格式给出当前时间。其中hh是小时,在00到23之间;mm是分钟,在00到59之间。
输出格式:
根据当前时间替大笨钟敲钟,即在一行中输出相应数量个Dang。如果不是敲钟期,则输出:
Only hh:mm. Too early to Dang.
其中hh:mm是输入的时间。
输入样例1:
19:05
输出样例1:
DangDangDangDangDangDangDangDang
输入样例2:
07:05
输出样例2:
Only 07:05. Too early to Dang.
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
水题~分类讨论就行
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
ios::sync_with_stdio(false);
string s;
cin>>s;
int h=(s[0]-'0')*10+(s[1]-'0');
int m=(s[3]-'0')*10+(s[4]-'0');
if(h<12)
cout<<"Only "<<s<<". Too early to Dang."<<endl;
else if(h==12&&m==0)
cout<<"Only "<<s<<". Too early to Dang."<<endl;
else
{
if(m==0)
{
for(int i=0;i<h-12;i++)
cout<<"Dang";
}
else
{
for(int i=0;i<=h-12;i++)
cout<<"Dang";
}
}
return 0;
}
7-3 谁先倒 (15 分)
划拳是古老中国酒文化的一个有趣的组成部分。酒桌上两人划拳的方法为:每人口中喊出一个数字,同时用手比划出一个数字。如果谁比划出的数字正好等于两人喊出的数字之和,谁就输了,输家罚一杯酒。两人同赢或两人同输则继续下一轮,直到唯一的赢家出现。
下面给出甲、乙两人的酒量(最多能喝多少杯不倒)和划拳记录,请你判断两个人谁先倒。
输入格式:
输入第一行先后给出甲、乙两人的酒量(不超过100的非负整数),以空格分隔。下一行给出一个正整数N(≤100),随后N行,每行给出一轮划拳的记录,格式为:
甲喊 甲划 乙喊 乙划
其中喊是喊出的数字,划是划出的数字,均为不超过100的正整数(两只手一起划)。
输出格式:
在第一行中输出先倒下的那个人:A代表甲,B代表乙。第二行中输出没倒的那个人喝了多少杯。题目保证有一个人倒下。注意程序处理到有人倒下就终止,后面的数据不必处理。
输入样例:
1 1
6
8 10 9 12
5 10 5 10
3 8 5 12
12 18 1 13
4 16 12 15
15 1 1 16
输出样例:
A
1
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
我先提供一份最开始只得了4分的错误代码,泥萌找找哪里有问题
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int a1[105],a2[105],b1[105],b2[105];
int main()
{
ios::sync_with_stdio(false);
int a,b,n,ans1=0,ans2=0;
cin>>a>>b>>n;
for(int i=0;i<n;i++)
{
if(ans1==a||ans2==b)
break;
cin>>a1[i]>>a2[i]>>b1[i]>>b2[i];
int m=a1[i]+b1[i];
if(a2[i]==m)
ans1++;
if(b2[i]==m)
ans2++;
}
if(ans1==a)
cout<<'A'<<endl<<ans2<<endl;
else
cout<<'B'<<endl<<ans1<<endl;
return 0;
}
相信(jia she)泥萌已经发现了,理解题意的重要性。
问题出在下面这几行
if(a2[i]==m)
ans1++;
if(b2[i]==m)
ans2++;
而题目中说:谁就输了,输家罚一杯酒。两人同赢或两人同输则继续下一轮
也就是说,不仅需要满足一人输,还需要满足另一个人嬴。
AC代码如下:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int a1[105],a2[105],b1[105],b2[105];
int main()
{
ios::sync_with_stdio(false);
int a,b,n,ans1=0,ans2=0;
cin>>a>>b>>n;
for(int i=0;i<n;i++)
{
cin>>a1[i]>>a2[i]>>b1[i]>>b2[i];
}
for(int i=0;i<n;i++)
{
if(ans1>a||ans2>b)
break;
int m=a1[i]+b1[i];
if(a2[i]==m&&b2[i]!=m)
ans1++;
if(b2[i]==m&&a2[i]!=m)
ans2++;
}
if(ans1>a)
cout<<'A'<<endl<<ans2<<endl;
else
cout<<'B'<<endl<<ans1<<endl;
return 0;
}
7-4 帅到没朋友 (20 分)
当芸芸众生忙着在朋友圈中发照片的时候,总有一些人因为太帅而没有朋友。本题就要求你找出那些帅到没有朋友的人。
输入格式:
输入第一行给出一个正整数N(≤100),是已知朋友圈的个数;随后N行,每行首先给出一个正整数K(≤1000),为朋友圈中的人数,然后列出一个朋友圈内的所有人——为方便起见,每人对应一个ID号,为5位数字(从00000到99999),ID间以空格分隔;之后给出一个正整数M(≤10000),为待查询的人数;随后一行中列出M个待查询的ID,以空格分隔。
注意:没有朋友的人可以是根本没安装“朋友圈”,也可以是只有自己一个人在朋友圈的人。虽然有个别自恋狂会自己把自己反复加进朋友圈,但题目保证所有K超过1的朋友圈里都至少有2个不同的人。
输出格式:
按输入的顺序输出那些帅到没朋友的人。ID间用1个空格分隔,行的首尾不得有多余空格。如果没有人太帅,则输出No one is handsome。
注意:同一个人可以被查询多次,但只输出一次。
输入样例1:
3
3 11111 22222 55555
2 33333 44444
4 55555 66666 99999 77777
8
55555 44444 10000 88888 22222 11111 23333 88888
输出样例1:
10000 88888 23333
输入样例2:
3
3 11111 22222 55555
2 33333 44444
4 55555 66666 99999 77777
4
55555 44444 22222 11111
输出样例2:
No one is handsome
时间限制: 250 ms
内存限制: 64 MB
代码长度限制: 16 KB
照例先放错误代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
ios::sync_with_stdio(false);
map<string,int>mp,mp2;
queue<string>q;
int n;
cin>>n;
while(n--)
{
int m;
cin>>m;
while(m--)
{
string s;
cin>>s;
mp[s]++;
}
}
int p;
cin>>p;
while(p--)
{
string s;
cin>>s;
if(mp2[s]==0)
{
if(mp[s]==0)
q.push(s);
}
mp2[s]++;
}
if(q.empty())
cout<<"No one is handsome"<<endl;
else
{
while(!q.empty())
{
if(q.size()==1)
cout<<q.front()<<endl;
else
cout<<q.front()<<" ";
q.pop();
}
}
return 0;
}
又是没好好读题的锅~
没有朋友的人可以是根本没安装“朋友圈”,也可以是只有自己一个人在朋友圈的人。也就是说,k=1的时候和没有k的时候没区别啊。wsl~
这道题我用了queue+map(其实可以不用queue,直接在线查询就行)。map的思路就是:当k>1时,把后面所有编号纳入map,之后查询的时候只要看看map的值是否为0就行。还要注意:同一个人可以被查询多次,但只输出一次。所以要再用一个map记录是否已经被查询过。当然这道题的编号并不大,用数组也ok,就是注意输出要把前导0补全。
AC代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
ios::sync_with_stdio(false);
map<string,int>mp,mp2;
queue<string>q;
int n;
cin>>n;
while(n--)
{
int m;
cin>>m;
for(int i=0;i<m;i++)
{
string s;
cin>>s;
if(m>1)
mp[s]++;
}
}
int p;
cin>>p;
while(p--)
{
string s;
cin>>s;
if(mp2[s]==0)
{
if(mp[s]==0)
q.push(s);
}
mp2[s]++;
}
if(q.empty())
cout<<"No one is handsome"<<endl;
else
{
while(!q.empty())
{
if(q.size()==1)
cout<<q.front()<<endl;
else
cout<<q.front()<<" ";
q.pop();
}
}
return 0;
}
7-5 重要的话说三遍 (5 分)
7-6 奇偶分家 (10 分)
//5、6两道zz题窝就直接跳了= =
7-7 输出GPLT (20 分)
给定一个长度不超过10000的、仅由英文字母构成的字符串。请将字符重新调整顺序,按GPLTGPLT…这样的顺序输出,并忽略其它字符。当然,四种字符(不区分大小写)的个数不一定是一样多的,若某种字符已经输出完,则余下的字符仍按GPLT的顺序打印,直到所有字符都被输出。
输入格式:
输入在一行中给出一个长度不超过10000的、仅由英文字母构成的非空字符串。
输出格式:
在一行中按题目要求输出排序后的字符串。题目保证输出非空。
输入样例:
pcTclnGloRgLrtLhgljkLhGFauPewSKgt
输出样例:
GPLTGPLTGLTGLGLL
时间限制: 200 ms
内存限制: 64 MB
代码长度限制: 16 KB
这道题纯暴力。本来想看看网上有没有什么大佬的巧妙解法,发现只能模拟。这道题题意可以转换到分别统计GPLT个数,然后依次输出。
AC代码如下:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
ios::sync_with_stdio(false);
string s;
cin>>s;
int ans1=0,ans2=0,ans3=0,ans4=0;
for(int i=0;i<s.size();i++)
{
if(s[i]=='G'||s[i]=='g')
ans1++;
if(s[i]=='P'||s[i]=='p')
ans2++;
if(s[i]=='L'||s[i]=='l')
ans3++;
if(s[i]=='T'||s[i]=='t')
ans4++;
}
int m=max(max(ans1,ans2),max(ans3,ans4));
while(m--)
{
if(ans1>0)
{
cout<<'G';
ans1--;
}
if(ans2>0)
{
cout<<'P';
ans2--;
}
if(ans3>0)
{
cout<<'L';
ans3--;
}
if(ans4>0)
{
cout<<'T';
ans4--;
}
}
return 0;
}
7-8 后天 (5 分)
//又是水题~跳鸭
7-9 抢红包 (25 分)
没有人没抢过红包吧…… 这里给出N个人之间互相发红包、抢红包的记录,请你统计一下他们抢红包的收获。
输入格式:
输入第一行给出一个正整数N(≤10^4),即参与发红包和抢红包的总人数,则这些人从1到N编号。随后N行,第i行给出编号为i的人发红包的记录,格式如下:
K N1 P1 ⋯NK PK
其中K(0≤K≤20)是发出去的红包个数,Ni是抢到红包的人的编号,Pi(>0)是其抢到的红包金额(以分为单位)。注意:对于同一个人发出的红包,每人最多只能抢1次,不能重复抢。
输出格式:
按照收入金额从高到低的递减顺序输出每个人的编号和收入金额(以元为单位,输出小数点后2位)。每个人的信息占一行,两数字间有1个空格。如果收入金额有并列,则按抢到红包的个数递减输出;如果还有并列,则按个人编号递增输出。
输入样例:
10
3 2 22 10 58 8 125
5 1 345 3 211 5 233 7 13 8 101
1 7 8800
2 1 1000 2 1000
2 4 250 10 320
6 5 11 9 22 8 33 7 44 10 55 4 2
1 3 8800
2 1 23 2 123
1 8 250
4 2 121 4 516 7 112 9 10
输出样例:
1 11.63
2 3.63
8 3.63
3 2.11
7 1.69
6 -1.67
9 -2.18
10 -3.26
5 -3.26
4 -12.32
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
用个结构体排序就好惹,不多说,直接上代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
struct p
{
int num,money,n;
}s[100005];
bool cmp(p a,p b)
{
if(a.money==b.money)
{
if(a.n==b.n)
return a.num<b.num;
return a.n>b.n;
}
return a.money>b.money;
}
int main()
{
//ios::sync_with_stdio(false);
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
s[i].num=i;
int m,sum=0;
cin>>m;
while(m--)
{
int c,d;
cin>>c>>d;
s[c].n++;
s[c].money+=d;
sum+=d;
}
s[i].money-=sum;
}
sort(s+1,s+n+1,cmp);
for(int i=1;i<=n;i++)
{
cout<<s[i].num<<" ";
printf("%.2f\n",s[i].money/100.0);
}
return 0;
}
7-10 排座位 (25 分)
布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。
输入格式:
输入第一行给出3个正整数:N(≤100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系,其中关系为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。
这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。
输出格式:
对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem;如果他们之间并不是朋友,但也不敌对,则输出OK;如果他们之间有敌对,然而也有共同的朋友,则输出OK but…;如果他们之间只有敌对关系,则输出No way。
输入样例:
7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2
输出样例:
No problem
OK
OK but...
No way
时间限制: 150 ms
内存限制: 64 MB
代码长度限制: 16 KB
其实我拿到这题的第一反应是并——查——集——!!!???!!!
寒假虽然练过并查集的题目,但是没有板子的话就不知道能不能写了。但是并查集的算法原理我是知道的,所以抱着那一丝丝希望,而且如果我写不出来必然会从排行榜跌下去,窝就果断开始写。
首先我们可以把判读敌人和朋友的方法区别开。朋友我采用的是并查集(因为涉及朋友的朋友也是朋友);敌人我采用的是结构体内部嵌套数组,标记是否直接敌对(只有单纯直接的敌对关系才是绝对不能同席的)。
我的AC代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int father[105];
struct diren
{
int s[105];
}q[105];
void init(int n)
{
for(int i=1;i<=n;i++)
{
father[i]=i;
}
}
int find_father(int n)
{
if(father[n]==n)
return n;
else
{
return find_father(father[n]);
}
}
void Union(int a,int b)
{
if(a>b)
swap(a,b);
father[b]=a;
}
int main()
{
ios::sync_with_stdio(false);
int n,m,k;
cin>>n>>m>>k;
init(n);
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
if(c==1)
{
Union(a,b);
}
else
{
q[a].s[b]=1;
q[b].s[a]=1;
}
}
while(k--)
{
int a,b;
cin>>a>>b;
if(q[a].s[b]==1 && find_father(a)!=find_father(b))
cout<<"No way"<<endl;
else if(q[a].s[b]==1)
cout<<"OK but..."<<endl;
else if(find_father(a)==find_father(b))
cout<<"No problem"<<endl;
else
cout<<"OK"<<endl;
}
return 0;
}
但是由于我的并查集是自己靠着理解瞎想的,并不标准,所以接下来推荐大佬代码(所以我为啥不用二维数组要用结构体内嵌数组…我傻了)。
#include<iostream>
#include<cstdio>
using namespace std;
int pre[101];
int map[101][101]; //邻接矩阵存储两者的直接关系,1朋友 -1敌对
int find(int x){ //寻找
int r = x;
while(pre[r]!=r){
r = pre[r];
}
int i=x ,j;
while(pre[i]!=r){ //路径压缩
j = pre[i];
pre[i] = r;
i = j;
}
return r;
}
void join(int x,int y){ //将两个集合合并
int fx = find(x);
int fy = find(y);
if(fx!=fy){
pre[fx] = fy;
}
}
bool same(int x,int y){ //判断两个元素是否在同一个集合中
if(find(x)==find(y)){
return true;
}else{
return false;
}
}
int main(){
int n,m,a,b,c,t;
cin>>n>>m>>t;
for(int i=1 ;i<=n ;i++){
pre[i] = i;
}
for(int i=1 ;i<=m ;i++){
scanf("%d%d%d",&a,&b,&c);
map[a][b] = c; //记录直接的对应关系
map[b][a] = c;
if(c==1){
join(a,b); //间接的朋友关系
}
}
for(int i=1 ;i<=t; i++){
scanf("%d%d",&a,&b);
if(map[a][b]==1){
printf("No problem\n");
}
else if(map[a][b]==-1&&find(a)==find(b)){
printf("OK but...\n");
}
else if(map[a][b]==-1&&find(a)!=find(b)){
printf("No way\n");
}
else if(map[a][b]!=-1&&map[a][b]!=1&&find(a)!=find(b)){
printf("OK\n");
}
}
return 0;
}