积性函数&反演

本文深入探讨了积性函数的概念,包括其定义、性质、运算定律,如交换律、结合律和分配律,并介绍了狄利克雷卷积。文章还阐述了积性函数的逆元、单位元函数以及常见积性函数如欧拉函数、莫比乌斯函数的特性。此外,详细解释了莫比乌斯反演公式及其证明,展示了该理论在数论问题解决中的重要应用。
摘要由CSDN通过智能技术生成

积性函数指对于所有互质的整数 a a a b b b 有性质 f ( a b ) = f ( a ) f ( b ) f (ab)=f(a)f(b) f(ab)=f(a)f(b) 的数论函数。

完全积性函数则将条件弱化为对任意整数 a , b a, b a,b​ 均满足上述条件。

积性函数的相关运算律

交换律 : f ∗ g = g ∗ f f * g = g * f fg=gf

结合律 : ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f * g) * h = f * (g * h) (fg)h=f(gh)

分配律 : f ∗ ( g + h ) = f ∗ g + f ∗ h f * (g + h) = f * g + f* h f(g+h)=fg+fh

h ( n ) = ( f ∗ g ) ( n ) = ∑ i ∣ n f ( i ) ∗ g ( n i ) h(n) = (f *g)(n) = \sum_{i | n} f(i) * g(\frac n i) h(n)=(fg)(n)=inf(i)g(in)

两个积性函数的狄利克雷卷积也是积性函数

积性函数的逆元也是积性函数

积性函数符合交换律,分配率,结合律

积性函数 f = g f = g f=g 的充分条件是 f ∗ h = g ∗ h f*h=g*h fh=gh ,其中 h ( 1 ) ≠ 0 h(1)\neq 0 h(1)=0​​

单位元函数 ( ε ( n ) ) (\varepsilon (n)) (ε(n))​ 的性质 : f ∗ ε = f f * \varepsilon = f fε=f

常见的积性函数

  1. 单位函数 ε ( n ) = [ n = = 1 ] 1 \varepsilon (n) = [n==1]^{1} ε(n)=[n==1]1
  2. 恒等函数 i d k ( n ) = n k id_k(n)=n^k idk(n)=nk i d 1 ( n ) id_1(n) id1(n) 常简记为 i d ( n ) id(n) id(n)
  3. 常数函数 I ( n ) = 1 I(n)=1 I(n)=1
  4. 除数函数 σ k ( n ) = ∑ d ∣ n d k σ 0 ( n ) \sigma_k(n) = \sum_{d|n}d^k\sigma_0(n) σk(n)=dndkσ0(n),记作 d ( n ) d(n) d(n) τ ( n ) \tau(n) τ(n) σ 1 ( n ) \sigma_1(n) σ1(n) 通常简记为 σ ( n ) \sigma(n) σ(n)
  5. 欧拉函数 φ ( n ) = ∑ i = 1 n [ g c d ( i , n ) = = 1 ] \varphi(n)=\sum_{i=1}^n[gcd(i,n)==1] φ(n)=i=1n[gcd(i,n)==1]
  6. 莫比乌斯函数 μ ( n ) = { 1 n = 1 ( − 1 ) k n = p 1 p 2 … p n 0 o t h e r w i s e \mu(n)=\begin{cases}1 & n=1 \\ (-1)^k & n=p_1p_2 \dots p_n \\ 0 & otherwise \\ \end{cases} μ(n)=1(1)k0n=1n=p1p2pnotherwise

积性函数的相关等式

ε = μ ∗ I    ⟺    ε ( n ) = ∑ d ∣ n μ ( d ) d = I ∗ I    ⟺    d ( n ) = ∑ d ∣ n 1 σ = i d ∗ I    ⟺    σ ( n ) = ∑ d ∣ n d φ = μ ∗ i d    ⟺    φ ( n ) = ∑ d ∣ n d   ⋅ μ ( n d ) \varepsilon = \mu * I \iff \varepsilon (n)=\sum_{d|n}\mu(d) \\ d = I * I \iff d (n)=\sum_{d|n}1 \\ \sigma = id * I \iff \sigma (n)=\sum_{d|n}d \\ \varphi = \mu * id \iff \varphi (n)=\sum_{d|n}d \,\cdot \mu(\dfrac n d) \\ ε=μIε(n)=dnμ(d)d=IId(n)=dn1σ=idIσ(n)=dndφ=μidφ(n)=dndμ(dn)

相关的性质

  1. ε = μ ∗ I \varepsilon = \mu * I ε=μI 可知 ∑ d ∣ n μ ( d ) = ε ( n ) = [ n = = 1 ] \sum_{d|n}\mu(d)=\varepsilon(n)=[n==1] dnμ(d)=ε(n)=[n==1] ,其中 n n n 可替换为 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j) 等其他形式
  2. φ ∗ 1 = i d \varphi * 1 = id φ1=id

莫比乌斯反演

f ( n ) , g ( n ) f(n),g(n) f(n),g(n) 为两个数论函数

1.如果 f ( n ) = ∑ d ∣ n g ( d ) f(n)=\sum_{d|n}g(d) f(n)=dng(d) ,则 g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) g(n)=\sum_{d|n}\mu(d)f(\dfrac n d) g(n)=dnμ(d)f(dn)

2.如果 f ( n ) = ∑ n ∣ d g ( d ) f(n)=\sum_{n|d}g(d) f(n)=ndg(d) ,则 g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) g(n)=\sum_{n|d}\mu(\dfrac d n )f(d) g(n)=ndμ(nd)f(d)

证明:

对于公式一

法一:
已 知    f ( n ) = ∑ d ∣ n g ( d )    , 则 有    f ( n d ) = ∑ k ∣ n d g ( k ) , ∴ ∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( d ) ∑ k ∣ n d g ( k ) 改 变 枚 举 顺 序 ∑ d ∣ n μ ( d ) f ( n d ) = ∑ d ∣ n μ ( d ) ∑ k ∣ n d g ( k ) = ∑ k ∣ n g ( k ) ∑ d ∣ n k μ ( d ) = ∑ k ∣ n g ( k ) [ n k = = 1 ] = g ( n ) 已知\;f(n)=\sum_{d|n}g(d)\;,则有\;f(\dfrac n d) =\sum_{k \mid \frac n d}g(k),\therefore \sum_{d|n}\mu(d)f(\dfrac n d)=\sum_{d|n}\mu(d)\sum_{k \mid \frac n d}g(k) \\改变枚举顺序\\ \sum_{d|n}\mu(d)f(\dfrac n d)=\sum_{d|n}\mu(d)\sum_{k \mid \frac n d}g(k)=\sum_{k \mid n} g(k)\sum_{d \mid \frac n k}\mu(d)=\sum_{k \mid n}g(k)[\dfrac nk ==1]=g(n) f(n)=dng(d)f(dn)=kdng(k)dnμ(d)f(dn)=dnμ(d)kdng(k)dnμ(d)f(dn)=dnμ(d)kdng(k)=kng(k)dknμ(d)=kng(k)[kn==1]=g(n)
法二:
由    f ( n ) = ∑ d ∣ n g ( d )    , 易 知    f = g ∗ I ⇒ f ∗ μ = g ∗ I ∗ μ = g 即 : g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) 由\;f(n)=\sum_{d|n}g(d)\;,易知\;f=g*I \Rightarrow f*\mu=g*I*\mu=g\\ 即:g(n)=\sum_{d\mid n}\mu(d)f(\dfrac n d) f(n)=dng(d)f=gIfμ=gIμ=g:g(n)=dnμ(d)f(dn)
对于公式二

公式二的证明思路与公式一的基本一致,但一些细节的处理需额外注意

通过公式一的证明,我们可以发现,大致思路是更换枚举顺序(这一点在很多数论问题的证明过程中都有体现),将 μ \mu μ 换到内层循环中,应该将 ∑ n ∣ d μ ( d n ) \sum_{n|d}\mu(\dfrac d n) ndμ(nd) 变为 ∑ d n ∣ … μ ( d n ) \sum_{\frac d n \mid \dots}\mu(\dfrac d n) ndμ(nd) 的样子,考虑到 n ∣ d , d ∣ k ⇒ n ∣ k n \mid d ,d \mid k \Rightarrow n \mid k nd,dknk 可以先枚举外层循环 ∑ n ∣ k g ( k ) \sum_{n \mid k}g(k) nkg(k)

而对于内层循环,要枚举 k k k 的因子 d d d d ∣ k d \mid k dk ,但前面所论述的不一致,又因为 n ∣ d , n ∣ k n\mid d ,n \mid k nd,nk ,所以可以变成 d n ∣ k n \frac d n \mid \frac k n ndnk ∴ ∑ n ∣ d μ ( d n ) f ( d ) = ∑ n ∣ d μ ( d n ) ∑ d ∣ k g ( d ) = ∑ n ∣ k g ( k ) ∑ d n ∣ k n μ ( d n ) = ∑ n ∣ k g ( k ) [ k n = = 1 ] = g ( n ) \therefore \sum_{n \mid d}\mu(\dfrac d n)f(d)=\sum_{n \mid d}\mu(\dfrac d n)\sum_{d \mid k}g(d)=\sum_{n \mid k} g(k) \sum_{\frac d n \mid \frac k n}\mu(\dfrac d n)=\sum_{n \mid k}g(k)[\dfrac k n==1]=g(n) ndμ(nd)f(d)=ndμ(nd)dkg(d)=nkg(k)ndnkμ(nd)=nkg(k)[nk==1]=g(n)

证毕

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值