动态规划--硬币排成线 III

问题:

给定一个序列 a[0], a[1], …, a[N-1]
两个玩家 Alice Bob 轮流取数
每个人每次只能取第一个数或最后一个数
双方都用最 优策略,使得自己的数字和尽量比对手大
问先手是否必胜
如果数字和一 ,也算先手
例子:
输入: [1, 5, 233, 7]
输出: True (先手取走 1 ,无 论后手取哪个,先手都能取走 233
分析:这是个博弈问题,这个题的一个突破点就是将两个人选取变成一个人的选取,也就是第一个人选取一个数后,第二个人选取的减去前一个人的这个总值就是一个参数。也就是说每个人都会选取最大的最有利的数。还是从两个数开始选,第一个人肯定选取相差最大的,若三个数,也是在两个人的基础上进行选择,故可以写出转移状态方程,f[i][j] = Math.max(a[i] - f[i+1][j], a[j] - f[i][j-1])
代码:

public boolean firstWillWin(int[] values) {

        // write your code here

        int n = values.length;

        int f[][] = new int[n][n];

        int i, j, len;

        if(n <= 2){

            return true;

        }

        for(i=0; i<n; i++){

            f[i][i] = values[i];

        }

        for(i=0; i<n-1; i++){

            f[i][i+1] = Math.max(values[i] - values[i+1], values[i+1] - values[i]);

        }

        for(len=2; len<n; len++){

            for(i=0; i<n-len; i++){

                j = i + len;

                f[i][j] = Math.max(values[i] - f[i+1][j], values[j] - f[i][j-1]);

            }

        }

        return f[0][n-1] >= 0;

    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值