数字三角形问题(动态规划)

c 同时被 3 个专栏收录
108 篇文章 0 订阅
57 篇文章 0 订阅
101 篇文章 0 订阅

数字三角形问题

Time Limit: 1000 ms Memory Limit: 65536 KiB

Submit Statistic

Problem Description

给定一个由n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
  
对于给定的由n行数字组成的数字三角形,计算从三角形的顶至底的路径经过的数字和的最大值。

Input

输入数据的第1行是数字三角形的行数n,1≤n≤100。接下来n行是数字三角形各行中的数字。所有数字在0..99之间。

Output

输出数据只有一个整数,表示计算出的最大值。

Sample Input

5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

Sample Output

30

Hint

 

Source

 思路:首先先建一个数组b[i][j]来表示第i行第j列元素到最后一行的数字和最大的值,用a数组来存储这个数字三角形。然后写出动态规划方程:

当i=n时,b[i][j] = a[i][j] ; 其他情况下, b[i][j] = max(b[i+1][j],b[i+1][j+1])+a[i][j] ; 

代码如下:

#include<stdio.h>
#include<string.h>
//a用来存储数字三角形,b用来记录该位置到最底部的和的最大值
int b[200][200] , a[200][200] ;

int max(int a, int b)
{
    if(a>b)
        return a ;
    else return b ;
}

int main()
{
    int  n ;
    int i , j ;
    scanf("%d",&n) ;
    //数字三角形的输入
    for(i=1; i<=n ; i++)
    {
        for(j=1;j<=i;j++)
            scanf("%d",&a[i][j])  ;
    }
    //动态方程的第一种情况
    for(i=1;i<=n;i++)
    {
        b[n][i] =  a[n][i] ;
    }
    //动态方程的第二种情况
    /**************************
    //第一种
    for(i=n;i>1;i--)
    {
        for(j=1;j<i;j++)
            b[i-1][j] = a[i-1][j]+max(b[i][j],b[i][j+1])
    }
    ***************************/
    //第二种
    for(i=n-1; i>=1 ; i--)
    {
        for(j=1;j<=i;j++)
            b[i][j] = a[i][j]+max(b[i+1][j],b[i+1][j+1]) ;
    }
    printf("%d\n",b[1][1]) ;
    return  0 ;
}

 

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页

打赏

正在学习c

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值