数字三角形问题
Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
给定一个由n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。
对于给定的由n行数字组成的数字三角形,计算从三角形的顶至底的路径经过的数字和的最大值。Input
输入数据的第1行是数字三角形的行数n,1≤n≤100。接下来n行是数字三角形各行中的数字。所有数字在0..99之间。
Output
输出数据只有一个整数,表示计算出的最大值。
Sample Input
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
Hint
Source
思路:首先先建一个数组b[i][j]来表示第i行第j列元素到最后一行的数字和最大的值,用a数组来存储这个数字三角形。然后写出动态规划方程:
当i=n时,b[i][j] = a[i][j] ; 其他情况下, b[i][j] = max(b[i+1][j],b[i+1][j+1])+a[i][j] ;
代码如下:
#include<stdio.h>
#include<string.h>
//a用来存储数字三角形,b用来记录该位置到最底部的和的最大值
int b[200][200] , a[200][200] ;
int max(int a, int b)
{
if(a>b)
return a ;
else return b ;
}
int main()
{
int n ;
int i , j ;
scanf("%d",&n) ;
//数字三角形的输入
for(i=1; i<=n ; i++)
{
for(j=1;j<=i;j++)
scanf("%d",&a[i][j]) ;
}
//动态方程的第一种情况
for(i=1;i<=n;i++)
{
b[n][i] = a[n][i] ;
}
//动态方程的第二种情况
/**************************
//第一种
for(i=n;i>1;i--)
{
for(j=1;j<i;j++)
b[i-1][j] = a[i-1][j]+max(b[i][j],b[i][j+1])
}
***************************/
//第二种
for(i=n-1; i>=1 ; i--)
{
for(j=1;j<=i;j++)
b[i][j] = a[i][j]+max(b[i+1][j],b[i+1][j+1]) ;
}
printf("%d\n",b[1][1]) ;
return 0 ;
}