[BZOJ3514][LCT][主席树]Codechef MARCH14 GERALD07加强版

BZOJ3514

手残把ls打成了rs调了一个晚上。。。
wsmBZOJ的MLE弹出来的是CE???

考虑从前往后加边,就不需要考虑r后面的边了
关键是如何除去 l l l前面的边的影响
如果一个图在某一时刻有了一个环,那么断开这个环上的任意一条边显然对连通性没有任何影响,反过来,如果加入一条边形成了一个环,那也没有任何影响
如何表示加边成环的过程?设形成环时环上最小的边编号为 x x x,新加入的边编号为 n o w now now,则 n o w now now会和编号大于等于 x x x且小于 n o w now now的边集中的某些边形成一个环,则我们就删去x,并记下 n u m [ n o w ] = x num[now]=x num[now]=x,表示 n o w now now这条边形成一个环所需要的编号最小的边的编号
则对于一个询问 [ l , r ] [l,r] [l,r],我们只需要查询出 [ l , r ] [l,r] [l,r]中有多少个 n u m num num小于 l l l,这些边都不会和 [ l , r ] [l,r] [l,r]中的边形成环,也就是说,这些边一定会使连通块个数 − 1 -1 1,所以用n减去这样的 n u m num num的个数即所求
查询可以用主席树

Code:

#include<bits/stdc++.h>
#define pb push_back
#define ll long long
#define db double
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
const int N=4e5+5,INF=1e9;
int n,m,q,t;
namespace LCT{
	int fa[N],ls[N],rs[N],rev[N],v[N],mx[N],id[N];
	inline int isrs(int x){return rs[fa[x]]==x;}
	inline bool isroot(int x){
		if(!fa[x]) return 1;
		return ls[fa[x]]!=x && rs[fa[x]]!=x;
	}
	inline void pushup(int x){
	    mx[x]=v[x];id[x]=x;
	    if(mx[ls[x]]>mx[x]) mx[x]=mx[ls[x]],id[x]=id[ls[x]];
	    if(mx[rs[x]]>mx[x]) mx[x]=mx[rs[x]],id[x]=id[rs[x]];
	}
	inline void pushdown(int x){
		if(rev[x]){
			swap(ls[x],rs[x]);
			if(ls[x]) rev[ls[x]]^=1;
			if(rs[x]) rev[rs[x]]^=1;
			rev[x]=0;
		}
	}
	inline void rotate(int x){
		int y=fa[x],z=fa[y],b=(ls[y]==x?rs[x]:ls[x]);
		if(z && !isroot(y)) (ls[z]==y?ls[z]:rs[z])=x;
		fa[x]=z;fa[y]=x;b?fa[b]=y:0;
		if(ls[y]==x) rs[x]=y,ls[y]=b;
		else ls[x]=y,rs[y]=b;
		pushup(y);pushup(x);
	}
	int que[N];
	inline void splay(int x){
		que[que[0]=1]=x;
		for(int y=x;!isroot(y);y=fa[y]) que[++que[0]]=fa[y];
		for(int i=que[0];i;i--) pushdown(que[i]);
		while(!isroot(x)){
			if(!isroot(fa[x])){
				if(isrs(x)==isrs(fa[x])) rotate(fa[x]);
				else rotate(x);
			}
			rotate(x);
		}
		pushup(x);
	}
	inline void access(int x){for(int y=0;x;y=x,x=fa[x]){splay(x);rs[x]=y;if(y) fa[y]=x;pushup(x);}}
	inline int findroot(int x){
		access(x);splay(x);
		while(pushdown(x),ls[x]) x=ls[x];
		splay(x);return x;
	}
	inline void makeroot(int x){access(x);splay(x);rev[x]^=1;}
	inline void split(int x,int y){makeroot(x);access(y);splay(y);}
	inline void link(int x,int y){makeroot(x);fa[x]=y;}
	inline void cut(int x,int y){split(x,y);fa[x]=ls[y]=0;pushup(y);}
	inline int query(int x,int y){split(x,y);return id[y];}
}
using namespace LCT;

namespace Graph{
	struct E{int x,y;}e[N];
	int ff[N],num[N];
	inline int get(int x){return x==ff[x]?x:ff[x]=get(ff[x]);}
}
using namespace Graph;

namespace President_tree{
	struct seg{int l,r,sum;}tr[N*30];
	#define lc(k) tr[k].l
	#define rc(k) tr[k].r
	int rt[N],cnt=0;
	void ins(int &k,int l,int r,int val){
		tr[++cnt]=tr[k];k=cnt;++tr[k].sum;
		if(l==r) return;
		int mid=(l+r)>>1;
		if(val<=mid) ins(lc(k),l,mid,val);
		else ins(rc(k),mid+1,r,val);
	}
	int ask(int k,int p,int l,int r,int ql,int qr){
		if(ql<=l && r<=qr) return tr[p].sum-tr[k].sum;
		else{
			int mid=(l+r)>>1,res=0;
			if(ql<=mid) res+=ask(lc(k),lc(p),l,mid,ql,qr);
			if(mid<qr) res+=ask(rc(k),rc(p),mid+1,r,ql,qr);
			return res;
		}
	}
}
using namespace President_tree;

int main(){
	n=read();m=read();q=read();t=read();
	memset(num,0,sizeof(num));
	for(int i=1;i<=m;i++){
		e[i].x=read();e[i].y=read();
		id[i+n]=i+n;mx[i+n]=v[i+n]=m+n-i+1;
	}
	for(int i=1;i<=m;i++){
		if(e[i].x==e[i].y) {num[i]=i;continue;}
		if(findroot(e[i].x)==findroot(e[i].y)){
			int del=query(e[i].x,e[i].y);
			int id=del-n;
			cut(del,e[id].x);cut(del,e[id].y);num[i]=id;
		}
		link(e[i].x,n+i);link(e[i].y,n+i);
	}
	for(int i=1;i<=m;i++) rt[i]=rt[i-1],ins(rt[i],0,m,num[i]);
	int l,r,ans=0;
	while(q--){
		l=read()^(t*ans);r=read()^(t*ans);
		ans=n-ask(rt[l-1],rt[r],0,m,0,l-1);
		cout<<ans<<"\n";
	}
	return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值