[BZOJ4008][概率DP]HNOI2015:亚瑟王

本文深入解析了BZOJ4008题目的算法思路,通过动态规划的方法,计算了多轮游戏中特定卡片出现的概率,并最终求得期望值。详细介绍了状态转移方程的推导过程及其实现代码。

BZOJ4008

考虑算概率最后乘上d,因为直接计算每张卡每轮的概率不现实(无法转移),所以考虑一个整体并且可以表示出每张卡的状态, f [ i ] [ j ] f[i][j] f[i][j]表示 m m m轮中前 i i i张卡用了 j j j张的概率,则要表示一张卡 i i i m m m轮中出现过的概率就是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]乘上必须选 i i i的概率,不选 i i i的概率就是在后面 m − j m-j mj轮中都跳过了 i i i的概率,就是 ( 1 − p [ i ] ) m − j (1-p[i])^{m-j} (1p[i])mj,用1减去不选的概率就是选的概率
然后转移就是考虑选不选 i i i,选不选 i i i的概率就如上面所述,方程为
f [ i ] [ j ] = f [ i − 1 ] [ j ] ∗ ( 1 − p [ i ] ) m − j + f [ i − 1 ] [ j − 1 ] ∗ ( 1 − ( 1 − p [ i ] ) m − j + 1 ) ) f[i][j]=f[i-1][j]*(1-p[i])^{m-j}+f[i-1][j-1]*(1-(1-p[i])^{m-j+1})) f[i][j]=f[i1][j](1p[i])mj+f[i1][j1](1(1p[i])mj+1))

Code:

#include<bits/stdc++.h>
#define db double
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
const int N=225;
inline db ksm(db a,int b){db res=1.0;for(;b;b>>=1,a*=a) if(b&1) res*=a;return res;}
db f[N][N],p[N];
int d[N];
int n,m;
int main(){
	int t=read();
	while(t--){
		memset(f,0,sizeof(f));
		n=read();m=read();
		for(int i=1;i<=n;++i){
			scanf("%lf",&p[i]);
			d[i]=read();
		}
		f[0][0]=1;
		for(int i=1;i<=n;++i)
			for(int j=0;j<=min(i,m);++j){
				if(!j) f[i][j]=f[i-1][j]*ksm(1-p[i],m-j);
				else f[i][j]=f[i-1][j]*ksm(1-p[i],m-j)+f[i-1][j-1]*(1-ksm(1-p[i],m-j+1));
			}
		db res=0;
		for(int i=1;i<=n;++i){
			db now=0;
			for(int j=0;j<=min(i-1,m);++j) if(j!=m) now+=f[i-1][j]*(1-ksm(1-p[i],m-j));
			res+=now*d[i];
		}
		printf("%.10lf\n",res);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值