[UOJ449][概率DP]集训队作业2018:喂鸽子

UOJ449

(传说中的 n 2 k n^2k n2k做法)
首先强制鸽子饱的顺序为 1 − n 1-n 1n,最后答案乘 n ! n! n!即可
我们只需要考虑喂一次喂到了未饱的鸽子的情况,我们称之为有效喂食
下一次喂食为有效喂食的概率为 n − x n \frac{n-x}{n} nnx,其中x为已经饱了的鸽子数
所以两次有效喂食之间的无效喂食次数的期望为 n n − x \frac{n}{n-x} nxn
这样我们就消除了无效喂食的影响了
g [ i ] [ j ] g[i][j] g[i][j]表示已经进行了 i i i次有效喂食, j j j只鸽子已经饱了的概率, f [ i ] [ j ] f[i][j] f[i][j]表示期望
转移有两种情况:
1.下一次喂食没有喂饱一只鸽子,这时概率就直接乘上 1 n − x \frac{1}{n-x} nx1,期望加上当前概率乘上无效喂食次数的期望
2.下一次喂食喂饱了一只鸽子,这时我们要从喂饱上一个鸽子之后的所有有效喂食中选出k-1个出来作为喂这只将要饱的鸽子的喂食,即 C i − j ∗ k k − 1 C_{i-j*k}^{k-1} Cijkk1,转移的时候就用情况1的转移乘上这个系数即可

Code:

#include<bits/stdc++.h>
#define mod 998244353
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
const int N=105,K=5005;
inline int add(int x,int y){x+=y;if(x>=mod) x-=mod;return x;}
inline int dec(int x,int y){x-=y;if(x<0) x+=mod;return x;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline void inc(int &x,int y){x+=y;if(x>=mod) x-=mod;}
inline void Dec(int &x,int y){x-=y;if(x<0) x+=mod;}
inline void Mul(int &x,int y){x=1ll*x*y%mod;}
inline int ksm(int a,int b){int res=1;for(;b;b>>=1,a=mul(a,a)) if(b&1) res=mul(res,a);return res;}
int fac[N*K],ifac[N*K];
int inv[N],p[N],e[N];
inline void init(int n,int k){
	fac[0]=fac[1]=ifac[0]=ifac[1]=1;
	for(int i=2;i<=n*k;i++) fac[i]=mul(fac[i-1],i);
	ifac[n*k]=ksm(fac[n*k],mod-2);
	for(int i=n*k-1;i;i--) ifac[i]=mul(ifac[i+1],i+1);
	inv[1]=1;
	for(int i=2;i<=n;i++) inv[i]=mul((mod-mod/i),inv[mod%i]);
	for(int i=0;i<=n;i++) p[i]=inv[n-i],e[i]=mul(n,inv[n-i]);
}
inline int C(int n,int m){if(n<0 || m<0 || n<m) return 0;return mul(fac[n],mul(ifac[m],ifac[n-m]));}
int f[N*K][N],g[N*K][N];
int main(){
	int n=read(),k=read();init(n,k);
	f[0][0]=0,g[0][0]=1;
	for(int i=0;i<=n*k;i++)
		for(int j=0;j<=i/k;j++) if(g[i][j]){
			int P=mul(g[i][j],p[j]),E=add(mul(P,e[j]),mul(p[j],f[i][j])),Com=C(i-j*k,k-1);
			inc(f[i+1][j],E);
			inc(g[i+1][j],P);
			inc(f[i+1][j+1],mul(E,Com));
			inc(g[i+1][j+1],mul(P,Com));
		}
	cout<<mul(f[n*k][n],fac[n]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值