190930模拟题解

T1:你在跟朋友玩一个记忆游戏。
朋友首先给你看了n个长度相同的串,然后从中等概率随机选择了一个串。
每一轮你可以询问一个位置上的正确字符,如果能够凭借已有的信息确定出朋友所选的串,那么游戏就结束了,你的成绩就是所用的轮数。
由于你实在太笨,不会任何策略,因此你采用一种方法,每次等概率随机询问一个未询问过的位置的字符。
现在你想知道,在这种情况下,你猜出结果所需的期望次数。

状压DP,预处理一个f数组表示询问某个状态之后可以确定多少个串,然后暴力转移即可

Code:

#include<bits/stdc++.h>
#define db double
#define ll long long
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f; 
}
const int S=1<<20;
char st[55][25];
ll same[S];
int s[S];
db f[S];
int main(){
	int n=read();
	for(int i=1;i<=n;i++) scanf("%s",st[i]);
	int len=strlen(st[1]);
	int all=(1<<len)-1;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++) if(i!=j){
			int ss=0;
			for(int k=0;k<len;k++) if(st[i][k]==st[j][k]) ss|=(1<<k);
			same[ss]|=(1ll<<(i-1)); 
		}
	for(int i=all;~i;i--)
		for(int j=0;j<len;j++) if(i&(1<<j)) same[i^(1<<j)]|=same[i];
	same[0]=(1LL<<n)-1;
	for(int i=0;i<=all;i++)
		for(int j=0;j<n;j++) if(same[i]&(1ll<<j)) ++s[i];
	for(int i=all;~i;i--){
		int ss=0;
		for(int j=0;j<len;j++) if(!(i&(1<<j))) ++ss;
		if(ss && s[i])
			for(int j=0;j<len;j++) 
				if(!(i&(1<<j)))
					f[i]+=((db)(s[i]-s[i^(1<<j)])/s[i]+(db)s[i^(1<<j)]/s[i]*(f[i^(1<<j)]+1.0))/ss;
	}
	printf("%.10f\n",f[0]);
	return 0;
}

T2:
有n个点,每个点有参数d,表示其度数最多为d,求构成1,2,…,n个点的无向生成树的方案数

生成树有几种做法:矩阵树,生成函数,组合数学,purfer序列
本题“度数最多为d”的限制非常强,直接导致生成函数和矩阵树爆掉
考虑purfer序列,显然就是构成一个长度为i-2的purfer序列的方案数,又因为每一种序列都是合法的purfer序列,所以只需要构造一个普通序列即可
dp[i][j][k]dp[i][j][k]表示考虑前i个点,j个点在purfer序列中,purfer序列长度为k
转移类似背包,枚举这个点在purfer序列中出现的次数l,则就是把l个板插到k个数中,用插板法可知选这个点的转移系数就为Ck+lkC_{k+l}^{k}

Code:

#include<bits/stdc++.h>
#define ll long long
#define mod 1000000007
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
inline ll add(ll x,ll y){x+=y;if(x>=mod) x-=mod;return x;}
inline ll dec(ll x,ll y){x-=y;if(x<0) x+=mod;return x;}
inline ll mul(ll x,ll y){return 1ll*x*y%mod;}
inline void inc(ll &x,ll y){x+=y;if(x>=mod) x-=mod;}
inline void Dec(ll &x,ll y){x-=y;if(x<0) x+=mod;}
inline void Mul(ll &x,ll y){x=1ll*x*y%mod;}
const int N=105;
int d[N];
ll dp[N][N][N],c[N][N];
int n;
inline void init(){
	for(int i=0;i<=n;i++){
		c[i][0]=1;
		for(int j=1;j<=i;j++) c[i][j]=add(c[i-1][j],c[i-1][j-1]);
	}
}
inline void file(){
	freopen("neuron.in","r",stdin);
	freopen("neuron.out","w",stdout);
}
int main(){
	init();n=read();
	for(int i=1;i<=n;i++) d[i]=read();
	dp[0][0][0]=1;
	init();
	for(int i=0;i<=n;i++)
		for(int j=0;j<=i;j++)
			for(int k=0;k<=n-2;k++)
				if(dp[i][j][k]){
					inc(dp[i+1][j][k],dp[i][j][k]);
					for(int l=0;l<=d[i+1]-1 && l+k<=n-2;l++) inc(dp[i+1][j+1][k+l],mul(dp[i][j][k],c[k+l][k]));
				}
	cout<<n<<" ";
	for(int i=2;i<=n;i++) cout<<dp[n][i][i-2]<<" ";
	return 0; 
}

T3:动态维护一个字符串的区间不同子串个数,支持末尾加字符
把所有last相同的点放到一棵splay中,则一次修改就是access,然后套个主席树维护答案即可
就是有点长


#include<bits/stdc++.h>
#define ll long long
#define pi pair<ll,int>
#define last last2
#define fi first
#define se second
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
const int N=2e5+5;
char s[N];
int L[N<<1],rt1[N],rt2[N],len;
struct President_tree{
	struct seg{int l,r,siz;ll sum;}tr[15000000];
	#define ls(k) tr[k].l
	#define rs(k) tr[k].r
	#define mid (l+r>>1)
	int cnt;
	inline int cpy(int k){cnt++;tr[cnt]=tr[k];return cnt;}
	int update(int k,int l,int r,int ql,int qr,int v){
		k=cpy(k);
		if(ql<=l && r<=qr){tr[k].sum+=v;++tr[k].siz;}
		else{
			if(ql<=mid) ls(k)=update(ls(k),l,mid,ql,qr,v);
			if(mid<qr) rs(k)=update(rs(k),mid+1,r,ql,qr,v);
		}
		return k;
	}
	pi query(int k,int l,int r,int pos){
		if(!k) return pi(0,0);
		if(l==r) return pi(tr[k].sum,tr[k].siz);
		pi ans;
		if(pos<=mid) ans=query(ls(k),l,mid,pos);
		else ans=query(rs(k),mid+1,r,pos);
		return pi(ans.fi+tr[k].sum,ans.se+tr[k].siz);
	}
}tr1,tr2;
namespace LCT{
	int ls[N],rs[N],fa[N],last[N];
	inline void copy(int x,int y){last[x]=last[y];}
	inline int isrs(int x){return rs[fa[x]]==x;}
	inline bool isroot(int x){
		if(!x) return true;
		return ls[fa[x]]!=x && rs[fa[x]]!=x;
	}
	inline void rotate(int x){
		int y=fa[x],z=fa[y],b=ls[y]==x?rs[x]:ls[x];
		if(z && !isroot(y)) (ls[z]==y?ls[z]:rs[z])=x;
		fa[x]=z,fa[y]=x;b?fa[b]=y:0;
		if(ls[y]==x) rs[x]=y,ls[y]=b;
		else ls[x]=y,rs[y]=b;
	}
	inline void splay(int x){
		int rt=x;
		while(!isroot(rt)) rt=fa[rt];
		swap(last[rt],last[x]);
		while(!isroot(x)){
			while(!isroot(fa[x])){
				if(isrs(x)==isrs(fa[x])) rotate(fa[x]);
				else rotate(x);
			}
			rotate(x);
		}
	}
	inline void access(int x,int id){
		rt1[id]=rt1[id-1];rt2[id]=rt2[id-1];
		for(int y=0;x;y=x,x=fa[x]){
			splay(x);
			if(L[x] && last[x]){
				int l=last[x]-L[x]+1,r=last[x]-L[fa[x]];
				if (l>1) rt1[id]=tr1.update(rt1[id],1,len,1,l-1,r-l+1);
				rt2[id]=tr2.update(rt2[id],1,len,l,r,r);
			}
			if(rs[x]) last[rs[x]]=last[x];
			rs[x]=y;
			last[y]=0;last[x]=id;
		}
	}
	inline void link(int x,int y){splay(x);fa[x]=y;}
	inline void cut(int x){splay(x);last[ls[x]]=last[x];fa[ls[x]]=fa[x];ls[x]=0;}
}
using namespace LCT;
namespace SAM{
	int fa[N<<1],ch[N<<1][26],last=1,tot=1;
	inline void inc(int c,int id){
		int p=last,np=++tot;L[np]=L[p]+1;last=np;
		for(;p&& !ch[p][c];p=fa[p]) ch[p][c]=np;
		if(!p){fa[np]=1;LCT::link(np,1);}
		else{
			int q=ch[p][c];
			if(L[q]==L[p]+1){fa[np]=q;LCT::link(np,q);}
			else{
				int nq=++tot;L[nq]=L[p]+1;
				memcpy(ch[nq],ch[q],sizeof(ch[q]));
				LCT::cut(q);LCT::copy(nq,q);
				fa[nq]=fa[q];LCT::link(nq,fa[nq]);
				fa[q]=fa[np]=nq;LCT::link(q,nq);LCT::link(np,nq);
				for(;p && ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
			}
		}
		LCT::access(np,id);
	}
}
char str[5];			
int main(){
	int t=read();
	scanf("%s",s+1);int m=read(); 
	int l=strlen(s+1);len=l+m;
	for(int i=1;i<=l;i++) SAM::inc(s[i]-'a',i);
	ll ans=0;
	for(int i=1;i<=m;i++){
		int op=read();
		if(op==1){
			scanf("%s",str);
			str[0]=(str[0]-'a'+ans*t)%26+'a';
			SAM::inc(str[0]-'a',++l);
		}
		else{
			int x=read(),y=read();
			x=(x-1+ans*t)%l+1;y=(y-1+ans*t)%l+1;
			pi ans1=tr1.query(rt1[y],1,len,x),ans2=tr2.query(rt2[y],1,len,x);
			ans=(ll)(y-x+2)*(y-x+1)/2-ans1.fi-ans2.fi+(ll)(x-1)*ans2.se;
			cout<<ans<<"\n";
		}
	}
	return 0;
}
©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值