给定 n 个闭区间[ai,bi]和n个整数ci。你需要构造一个整数集合 Z,使得对于任意 i∈[1,n],ZZ 中满足ai≤x≤bi
的整数x 不少于 ci个,求这样的整数集合 Z 最少包含多少个数。输入 第一行一个整数 nn,表示区间个数;
以下 nn行每行描述这些区间,第i+1i+1行三个整数ai,bi,ciai,bi,ci ,由空格隔开
输出 一行,输出满足要求的序列最少整数个数。
样例输入
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
样例输出
6
提示
对于全部数据,1≤n≤5×1e4,0≤ai≤bi≤5×1e4,1≤ci≤bi−ai+1
分析:
简而言之就是,从0∼5×1e4中选出尽量少的整数,使每个区间 [ai,bi] 内都有至少 ci个数被选出。
设前k个数中,至少选出s[k]个数,用前缀和的思想得到s[b[i]]-s[a[i]-1]>=c[i];
并且要满足以下条件:
1.s[k]-s[k-1]>=0 因为0 ~ k中选出的数不会比0 ~ k-1中少
2.s[k]-s[k-1]<=1 因为每个数只能被选一次
这样我们的差分约束系统就完善了
代码:(自行复制下来看)
#include<bits/stdc++.h>
using namespace std;
const int N=100005,M=200005;
int tot=0,vis[M],head[M],nxt[M],c[M],d[N],pt[N];
inline void add(int x,int y,int z){vis[++tot]=y,nxt[tot]=head[x],head[x]=tot,c[tot]=z;}
void spfa(int st){
queue<int>q;
memset(d,0x3f,sizeof(d));
memset(pt,0,sizeof(pt));
d[st]=0;q.push(st);pt[st]=1;
while(q.size()){
int x=q.front();q.pop();pt[x]=0;
for(int i=head[x];i;i=nxt[i]){
if(d[vis[i]]>d[x]+c[i]){
d[vis[i]]=d[x]+c[i];
if(!pt[vis[i]]) {
pt[vis[i]]=1;
q.push(vis[i]);
}
}
}
}
}
int n;
int maxn=0;
int getmap(){
cin>>n;
for(int i=1;i<=n;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
a++,b++; maxn=max(b,maxn);
add(b,a-1,-c);
}
for(int i=0;i<=50000;i++) add(i-1,i,1);
for(int i=0;i<=50000;i++) add(i,i-1,0);
}
int main(){
getmap();
spfa(maxn);
cout<<-d[0];
}