[LOJ2409][生成函数][NTT]THUPC2017:小L的计算题

LOJ2409

F ( x ) F(x) F(x) f f f的OGF
F ( x ) = ∑ i = 0 ∞ f [ i ] x i F(x)=\sum_{i=0}^{\infin}{f[i]x^i} F(x)=i=0f[i]xi
= ∑ i = 0 ∞ x i ∑ j = 1 n a j i =\sum_{i=0}^{\infin}{x^i\sum_{j=1}^n{{a_j}^i}} =i=0xij=1naji
= ∑ j = 1 n ∑ i = 0 ∞ ( x ∗ a j ) i =\sum_{j=1}^{n}{\sum_{i=0}^{\infin}{(x*a_j)^i}} =j=1ni=0(xaj)i
= ∑ i = 1 n 1 1 − a i x =\sum_{i=1}^{n}{\frac{1}{1-a_ix}} =i=1n1aix1
= ∑ i = 1 n 1 + a i x 1 − a i x =\sum_{i=1}^{n}{1+\frac{a_ix}{1-a_ix}} =i=1n1+1aixaix
= n − ∑ i = 1 n − a i x 1 − a i x =n-\sum_{i=1}^{n}{\frac{-a_ix}{1-a_ix}} =ni=1n1aixaix
= n − x ∑ i = 1 n − a i 1 − a i x =n-x\sum_{i=1}^{n}{\frac{-a_i}{1-a_ix}} =nxi=1n1aixai
然后右边就可以愉快的求导了
= n − x ( l n ( ∏ j ( 1 − a j x ) ) ′ =n-x{(ln(\prod_j(1-a_jx))'} =nx(ln(j(1ajx))
则分治NTT+多项式ln即可

Code:

#include<bits/stdc++.h>
#define poly vector<ll>
#define ll long long
#define int long long
#define pb push_back
#define mod 998244353
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
inline ll add(ll x,ll y){x+=y;if(x>=mod) x-=mod;return x;}
inline ll dec(ll x,ll y){x-=y;if(x<0) x+=mod;return x;}
inline ll mul(ll a,ll b){return ((a*b)-(ll)((long double)a/mod*b)*mod+mod)%mod;}
inline void Mul(ll &x,ll y){x=mul(x,y);}
inline void inc(ll &x,ll y){x+=y;if(x>=mod) x-=mod;}
inline ll ksm(ll a,ll b){ll res=1;for(;b;b>>=1,Mul(a,a)) if(b&1) Mul(res,a);return res;}
namespace Ntt{
	const int N=1e6+5;
	int *w[22],rev[N<<2];
	inline void init(int n){for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)*(n>>1));}
	inline void init_w(){
		for(int i=1;i<=21;i++) w[i]=new int[1<<(i-1)];
		int wn=ksm(3,(mod-1)/(1<<21));
		w[21][0]=1;
		for(int i=1;i<(1<<(20));i++) w[21][i]=mul(w[21][i-1],wn);
		for(int i=20;i;i--)
			for(int j=0;j<(1<<(i-1));j++) w[i][j]=w[i+1][j<<1];
	}
	inline void ntt(poly &f,int n,int kd){
		for(int i=0;i<n;i++) if(i>rev[i]) swap(f[i],f[rev[i]]);
		for(int mid=1,l=1;mid<n;mid<<=1,l++){
			for(int i=0;i<n;i+=(mid<<1)){
				for(int j=0,a0,a1;j<mid;j++){
					a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]);
					f[i+j]=add(a0,a1);f[i+j+mid]=dec(a0,a1);
				}
			}
		}
		if(kd==-1 && (reverse(f.begin()+1,f.begin()+n),1))
			for(int inv=ksm(n,mod-2),i=0;i<n;i++) Mul(f[i],inv);
	}	
	inline poly operator -(poly a,poly b){
		poly c;int lim=max(a.size(),b.size());c.resize(lim);
		for(int i=0;i<lim;i++)c[i]=dec(a[i],b[i]);return c;
	}
	inline void poly_mul(poly &a,int b){for(int i=0;i<a.size();i++) a[i]=mul(a[i],b);}
	inline poly operator *(poly a,poly b){
		int m=a.size()+b.size()-1,n=1;
		if(m<=128){
			poly c(m,0);
			for(int i=0;i<a.size();i++)
				for(int j=0;j<b.size();j++) inc(c[i+j],mul(a[i],b[j]));
			return c;	
		}
		while(n<m) n<<=1;
		init(n);
		a.resize(n);ntt(a,n,1);
		b.resize(n);ntt(b,n,1);
		for(int i=0;i<n;i++) Mul(a[i],b[i]);
		ntt(a,n,-1);a.resize(m);
		return a;
	}
}
using namespace Ntt;

ll val[N];
inline poly solve(int l,int r){
	if(l==r){poly c;c.pb(1);c.pb(-val[l]);return c;}
	int mid=l+r>>1;
	return solve(l,mid)*solve(mid+1,r);
}

inline poly Inv(poly a,int n){
	poly c,b(1,ksm(a[0],mod-2));
	for(int lim=4;lim<(n<<2);lim<<=1){
		init(lim);
		c=a;c.resize(lim>>1);
		c.resize(lim);ntt(c,lim,1);
		b.resize(lim);ntt(b,lim,1);
		for(int i=0;i<lim;i++) Mul(b[i],dec(2,mul(b[i],c[i])));
		ntt(b,lim,-1);b.resize(lim>>1);
	}
	b.resize(n);return b;
}

inline poly deriv(poly a){
	for(int i=0;i<a.size()-1;i++) a[i]=mul(a[i+1],i+1);
	a.pop_back();return a;
}

ll inv[N];

inline poly integ(poly a){
	a.push_back(0);
	for(int i=a.size()-1;i;i--) a[i]=mul(a[i-1],inv[i]);
	a[0]=0;
	return a;
}

inline poly ln(poly a,int n){
	a=integ(deriv(a)*Inv(a,n)),a.resize(n);
	return a;
}

poly a,ans;
signed main(){
	inv[1]=1;
	for(int i=2;i<N;i++) inv[i]=((mod-mod/i)*inv[mod%i])%mod;
	init_w();
	int t=read();
	while(t--){
		int n=read();
		for(int i=1;i<=n;i++) val[i]=read();
		a=solve(1,n);
		poly b;
		b.pb(0);b.pb(1);
		ans=deriv(ln(a,a.size()+1))*b;
		poly_mul(ans,-1);
		ll finalans=0;
		for(int i=1;i<=n;i++) finalans^=ans[i];
		cout<<finalans<<"\n";
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值