图像分割算法——Normalized Cuts(Ncuts) 算法的简单理解

这篇博客介绍了基于图论的图像分割方法,特别是Normalized Cuts(Ncuts)算法,如何通过转化成图的最小割问题来确定图像区域。作者详细阐述了最小割的概念,以及为何这种方法能有效分割图像,同时讨论了如何改进目标函数以避免孤立像素的分割问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做毕业设计,看文献综述时查了一些资料,打算在CSDN上对现有的图像分割方法做一些简单的笔记:

首先需要介绍的是,该算法是一种基于图论的算法:将整幅图像映射为一个带权值的无向图G=(V, E),V为点集,E为边集。图像中的像素点视为图中的顶点,像素点之间相邻关系表示为图中的边,像素点间的相似性或差异性为边的权值。基于图论的算法主要思想是:将图像分割问题,转化为图论中图的划分问题,从而求解。

下面具体说一说Normalized Cuts算法(Ncuts)。该算法的创作者Wu等人根据图论当中的最小割(min-cut)的定义,将图像分割问题转化为求解对应图的最小割问题。

什么是最小割问题?首先明确什么是割:对于一张无向带权图G = (V, E, w),若存在边集C,将点集V分为点集S和点集T,满足S∪T = V,S∩T = ∅,C中任何一条边的两个端点分别属于S和T中,那么称C = (S, T)是图G的一个割(也称作割集)。最小割指的就是边权值之和最小的割集,最小割问题就是要求解最小割。

在图像分割问题中,定义最小割问题的目标函数可以这样表示:

​​

图1

其中𝑤(u,v )为(u,v )边的权值。求解最小割的方法大家可以参考这篇文章:https://riteme.site/blog/2017-2-12/mincut.html。本文只是对Ncuts算法做简单理解和笔记,并不详细描述算法的具体实现。

那么为什么我们可以将图像分割问题转化为最小割问题求解呢?我是这么理解的,举个例子:图像分割问题就是根据像素点之间的相似程度来确定不同的区域,从而分割图像,则定义相邻像素点之间的相似程度为边,相似程度越大,边的权值越大。而且很显而易见的一点是:不同区域之间的差异是非常大的,因此相邻区域之间连通的边的权值,一定都是较小的值(不同区域之间相似程度小,相邻边的权值就很小)。所以我们可以这样想:找到了权值之和比较小的边集,就可能相当于找到了区域的边界。可利用下图来做解释:

图2

在图2中,黄色拼图区域中的像素点之间,边权值一定是非常大的(因此这些权值很大的边不可能存在于最小割集中),而不同区域之间的边权值肯定很小,比如黄色拼图区域与蓝色拼图区域边界线上的边权值,一定是很小的值,这就是为什么我们需要求最小割集来解决图像分割问题。

但是仅用上文提到的目标函数来做图像分割时, 往往会出现分割单个点的情况,如下图所示:

图3

注:该图引用自原Ncuts算法论文原文

​可以看到,普通的最小割算法会更加倾向于做Min-cut1和Min-cut2这样的分割,因为单个像素点所组成的点集,与其他点集相邻的边一般是最少的,所以边权值之和往往也是最小的,这样一来,结果往往是分割出了一个个孤立的像素点,实验结果并不理想。我们真正想要的图像分割,实际上是类似图中better cut这样的。

为了解决上文所提到的问题,Wu等人改进了目标函数,变成了下图这个样子:

图4

注:该图引用自原Ncuts算法论文原文

其中A, B均为点集,V为整个图像的总像素点集。A∩B = ∅。cut(A, B)就是分割A,B两集合的割集的权值和,assoc(A , V)表示A中所有点与图中所有点(即点集V)相连的边的权值和。引入assoc这个函数后,就能比较好地避免分割出孤立点的情况,我们可以先看左边的分式来理解:

图5

如果A集合只包含一个点,那么cut(A, B)占assoc(A, V)的比值会很大,比如在图3当中,假设n1点独立构成点集A,则根据图5的公式,得到的比值为1,相当于cut(A, B)完全等于assoc(A, V)。而如果点集A不为孤立点,则这个比值会较小。

参考链接:

[1] 无向图最小割 - riteme.site

[2]Ncut算法(Normalized cuts and image segmentation)_how coding-CSDN博客_ncut算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值