文章摘要
Query改写在传统搜索引擎、基于 LLM 的 Agent 系统、RAG 知识库系统等场景中均有应用,在传统搜索引擎中可提升搜索结果相关性与准确性,如进行查询扩展和放宽;在基于 LLM 的 Agent 系统中应用更灵活智能,包括上下文理解和复杂查询处理;在 RAG 系统中是提升信息检索效率的关键,可进行多查询生成和知识增强。其应用原理包括语义理解、上下文利用和反馈机制,具体流程涵盖用户输入分析、查询优化、上下文整合、执行检索和结果反馈等步骤,能有效提升搜索引擎和智能 Agent 系统性能,使用户获得更准确相关结果。
Query改写的应用场景
传统搜索引擎中的应用
在传统搜索引擎中,Query改写主要用于提升搜索结果的相关性和准确性。通过对用户输入的查询进行优化,搜索引擎能够更好地理解用户的意图,从而返回更符合需求的结果。具体应用场景包括:
-
查询扩展:通过添加同义词或相关词汇,扩大查询范围,以提高召回率。例如,将“ip lawyer”扩展为“ip OR ‘intellectual property’ AND (lawyer OR attorney)”[5]。
-
查询放宽:在用户查询过于严格时,放宽条件以增加可能的匹配结果。这种方法在用户输入模糊或不完整时尤为有效[5][3]。
基于LLM的Agent系统中的应用
在基于大语言模型(LLM)的Agent系统中,Query改写的应用更加灵活和智能。LLM能