数学渣的测度论笔记

Lesson 1:Chp1 集合与测度

1.1集合运算与集类

1.集合

符号

Ω \Omega Ω:一个非空集合(空间)
ω \omega ω Ω \Omega Ω 中元素点
A: Ω \Omega Ω 中元素的集合(子集)
Bc :余集 ⇒ Ω \ B \Rightarrow\Omega \backslash B Ω\B

包含: A ⊂ B : ω ∈ A ⇒ ω ∈ B A\subset B:\omega \in A \Rightarrow \omega \in B AB:ωAωB
集合相等: A = B : A ⊂ B , B ⊂ A A = B :A\subset B, B \subset A A=B:AB,BA

集合运算

并: A ∪ B : ω ∈ A   或   ω ∈ B A\cup B:\omega \in A\ 或\ \omega\in B AB:ωA  ωB
交: A ∩ B : ω ∈ A   且   ω ∈ B A\cap B:\omega \in A\ 且\ \omega\in B AB:ωA  ωB ( A ∩ B 常 记 为 A B ) \quad (A\cap B常记为AB) (ABAB)
    A + B : A ∩ B = ∅   时 , A ∩ B 记 为 A + B \quad \ \ \ A+B:A\cap B = \emptyset \ 时,A\cap B记为A+B    A+B:AB= ,ABA+B

差: A \ B : ω ∈ A   且   ω ∉ B A\backslash B:\omega \in A\ 且\ \omega\notin B A\B:ωA  ω/B ( A \ B = A ∩ B c ) \quad (A\backslash B = A\cap B^c) (A\B=ABc)
    A − B : B ⊂ A   时 , A \ B 记 为 A − B \quad \ \ \ A-B:B\subset A \ 时,A\backslash B记为A-B    AB:BA ,A\BAB

对称差: A △ B : ( A \ B ) ∪ ( B \ A ) A\bigtriangleup B:(A\backslash B)\cup (B\backslash A) AB:(A\B)(B\A)

2.集类: { A i , i ∈ I } \{A_i ,i\in I\} {Ai,iI}

相关性质

(可列个集合)
⋃ i ∈ I A i = { ω ∣   ∃ i ∈ I , s . t . ω ∈ A i } \bigcup_{i\in I} A_i = \{\omega|\ \exist i \in I,s.t.\omega \in A_i \} iIAi={ω iI,s.t.ωAi}
⋂ i ∈ I A i = { ω ∣   ∀ i ∈ I , ω ∈ A i } \bigcap_{i\in I} A_i = \{\omega|\ \forall i \in I,\omega \in A_i \} iIAi={ω iI,ωAi}

( ⋃ i ∈ I A i ) ∩ B = ⋃ i ∈ I ( A i ∩ B ) (\bigcup_{i\in I} A_i )\cap B = \bigcup_{i\in I} (A_i \cap B) (iIAi)B=iI(AiB)
(满足相应交换律、结合律、de Morgan公式)

上下限集

lim ⁡ n → ∞ ‾ A n = lim sup ⁡ n → ∞ A n = ⋂ n = 1 ∞ ⋃ k = n ∞ A k = { ω ∣ ∀ n , ∃ k ≥ n , ω ∈ A k } = { ω ∣ ω 属 于 { A n } 中 无 穷 多 个 } \overline{\lim_{n\to\infty}}A_n= \limsup_{n\to\infty}A_n =\bigcap_{n = 1}^\infty \bigcup_{k = n}^\infty A_k\\ =\{\omega|\forall n,\exist k\ge n,\omega\in A_k\}\\ =\{\omega|\omega 属于\{A_n\}中无穷多个\} nlimAn=nlimsupAn=n=1k=nAk={ωn,kn,ωAk}={ωω{An}}

lim ⁡ ‾ n → ∞ A n = lim inf ⁡ n → ∞ A n = ⋃ n = 1 ∞ ⋂ k = n ∞ A k = { ω ∣ ∃ n , ∀ k ≥ n , ω ∈ A k } = { ω ∣ ω 不 属 于 { A n } 中 有 限 多 个 } \underline{\lim}_{n\to \infty}A_n=\liminf_{n\to\infty}A_n =\bigcup_{n = 1}^\infty \bigcap_{k = n}^\infty A_k\\ =\{\omega|\exist n,\forall k\ge n,\omega\in A_k\}\\ =\{\omega|\omega 不属于\{A_n\}中有限多个\} limnAn=nliminfAn=n=1k=nAk={ωn,kn,ωAk}={ωω{An}}
关系: lim ⁡ ‾ n → ∞ A n ⊃ lim ⁡ ‾ n → ∞ A n \overline{\lim}_{n\to\infty}A_n\supset\underline{\lim}_{n\to \infty}A_n limnAnlimnAn
(为理解文字描述: 如 ω ∈ A 1 , A 3 , A 5 , . . . , 则 ω ∈ lim ⁡ ‾ n → ∞ A n , ω ∉ lim ⁡ ‾ n → ∞ A n 如\omega\in A_1,A_3,A_5,...,则\omega\in\overline{\lim}_{n\to\infty}A_n,\omega\notin\underline{\lim}_{n\to \infty}A_n ωA1,A3,A5,...,ωlimnAn,ω/limnAn

例:
A n = { B , n为偶数  C , n为奇数  , 则 lim ⁡ ‾ n → ∞ A n = B ∪ C , lim ⁡ ‾ n → ∞ A n = B ∩ C A_n= \begin{cases} B, &\text{n为偶数 } \\ C, &\text{n为奇数 } \end{cases},则\overline{\lim}_{n\to\infty}A_n = B\cup C,\underline{\lim}_{n\to \infty}A_n = B\cap C An={B,C,n为偶数 n为奇数 limnAn=BC,limnAn=BC
(看到一种类比,上限集类比于最小公倍数,下限集类比于最大公约数,感觉意会了,有更好的理解望大家不吝赐教)

极限: lim ⁡ ‾ n → ∞ A n = lim ⁡ ‾ n → ∞ A n \overline{\lim}_{n\to\infty}A_n=\underline{\lim}_{n\to \infty}A_n limnAn=limnAn,则称极限集存在,记为 lim ⁡ n → ∞ A n \lim_{n\to\infty}A_n limnAn

Lesson 2: Chp1

构造集类

C \mathcal{C} C 为一非空集类
有限交封闭: A , B ∈ C ⇒ A ∩ B ∈ C A,B\in \mathcal{C}\Rightarrow A\cap B \in \mathcal{C} A,BCABC,则称 C \mathcal{C} C 对有限交封闭(从而 ∩ i = 1 n A i ∈ C \cap_{i=1}^n A_i \in \mathcal{C} i=1nAiC
C ∩ f : \mathcal{C}_{\cap f}: Cf:用有限交运算封闭 C \mathcal{C} C 所得的集类
C ∩ f = { A ∣ A = ⋂ i = 1 n A i , A i ∈ C , i = 1 , . . . , n , n ≥ 1 } \mathcal{C}_{\cap f} = \left\{A\left|A= \bigcap_{i=1}^n A_i,A_i\in\mathcal{C},i=1,...,n,n\ge1\right.\right\} Cf={AA=i=1nAi,AiC,i=1,...,n,n1}

可列交封闭: A n ∈ C , n ≥ 1 ⇒ ⋂ n ∞ A n ∈ C A_n\in \mathcal{C},n\ge 1\Rightarrow \bigcap_n^\infty A_n\in \mathcal{C} AnC,n1nAnC,则称 C \mathcal{C} C 对可列交封闭
(类似可定义有限并封闭可列并封闭

C δ : \mathcal{C}_\delta: Cδ:用可列交运算封闭 C \mathcal{C} C 所得的集类
C ∪ f : \mathcal{C}_{\cup f}: Cf:有限并运算封闭…
C σ : \mathcal{C}_\sigma: Cσ:可列并运算封闭…
C Σ f : \mathcal{C}_{\Sigma f}: CΣf:有限不交并…
C Σ σ : \mathcal{C}_{\Sigma \sigma}: CΣσ:可列不交并…

联系

命题1.1.7 (由集合的交和并的分配律可得):

  1. C ∪ f , ∩ f = C ∩ f , ∪ f \mathcal{C}_{\cup f,\cap f}=\mathcal{C}_{\cap f,\cup f} Cf,f=Cf,f
  2. C \mathcal{C} C对有限交封闭,则 C ∪ f , C σ , C Σ f , C Σ σ \mathcal{C}_{\cup f},\mathcal{C}_\sigma, \mathcal{C}_{\Sigma f},\mathcal{C}_{\Sigma \sigma} Cf,Cσ,CΣf,CΣσ对有限交封闭
  3. C \mathcal{C} C对有限并封闭,则 C ∩ f , C δ \mathcal{C}_{\cap f},\mathcal{C}_{\delta} Cf,Cδ
集类分类

下用集合运算的封闭性划分不同类型的集类
定义1.1.8

  1. 集类 C \mathcal{C} C 对有限交封闭,则称 C \mathcal{C} C π \pi π
  2. 半环: ∅ ∈ C \emptyset \in \mathcal{C} C,对有限交封闭 ( A , B ∈ C ⇒ A ∩ B ∈ C ) (A,B\in \mathcal{C}\Rightarrow A\cap B\in \mathcal{C}) (A,BCABC),且 A \ B ∈ C Σ f A\backslash B \in \mathcal{C}_{\Sigma f} A\BCΣf:即 ∃ A i ∈ C , i = 1 , . . . , n , s . t . A \ B = ∑ i = 1 n A i \exist A_i\in \mathcal{C},i=1,...,n,s.t.A\backslash B = \sum_{i=1}^nA_i AiC,i=1,...,n,s.t.A\B=i=1nAi

    (将2.中A取为 Ω \Omega Ω ,可扩展到3.)
  3. 半(集)代数,半域 C \mathcal{C} C 是半环且 Ω ∈ C \Omega \in \mathcal{C} ΩC
    { ①    ∅ , Ω ∈ C ; ②   对 有 限 交 封 闭 ; ③   ∀ A ∈ C , ∃ A i ∈ C , i = 1 , . . . , n , s . t .   A c = ∑ i = 1 n A i ③ ′   ∀ A , B ∈ C , B ⊂ A , 则 A \ B = ∑ i = 1 n A i , A i ∈ C ③ ′ ′   ∀ A , B ∈ C , B ⊂ A , 则 A = B + ∑ i = 1 n A i , A i ∈ C \begin{cases} ① \ \ \emptyset,\Omega \in\mathcal{C} ;\\ ② \ 对有限交封闭;\\ ③ \ \forall A\in \mathcal{C},\exist A_i\in \mathcal{C},i=1,...,n,s.t.\ A^c = \sum_{i=1}^nA_i\\ ③'\ \forall A,B\in \mathcal{C},B\subset A,则 A\backslash B = \sum_{i=1}^nA_i,A_i\in \mathcal{C}\\ ③''\ \forall A,B\in \mathcal{C},B\subset A,则 A= B+\sum_{i=1}^nA_i,A_i\in \mathcal{C}\\ \end{cases}   ,ΩC; ; AC,AiC,i=1,...,n,s.t. Ac=i=1nAi A,BC,BA,A\B=i=1nAi,AiC A,BC,BA,A=B+i=1nAi,AiC
  4. (集)代数,域 ∅ , Ω ∈ C \emptyset,\Omega \in \mathcal{C} ,ΩC,对有限交、补封闭(或有限并 /差 /对称差、补封闭)

    (此时交、差、并、补封闭,极限不一定封闭)
  5. σ \sigma σ代数, σ \sigma σ ∅ , Ω ∈ C \emptyset,\Omega \in \mathcal{C} ,ΩC,对可列交、补封闭(或可列并、补封闭)
    此时:
    lim ⁡ n → ∞ ‾ A n = ⋂ n = 1 ∞ ⋃ k = n ∞ A k ∈ C lim ⁡ ‾ n → ∞ A n = ⋃ n = 1 ∞ ⋂ k = n ∞ A k ∈ C \overline{\lim_{n\to\infty}}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k\in \mathcal{C}\\ \underline{\lim}_{n\to \infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k\in \mathcal{C}\\ nlimAn=n=1k=nAkClimnAn=n=1k=nAkC
    (特殊类)
  6. 单调类:对单调序列的极限封闭(即 { A n ∈ C , A n ↑ , ⋃ n = 1 ∞ A n ∈ C A n ∈ C , A n ↓ , ⋂ n = 1 ∞ A n ∈ C \begin{cases} A_n\in\mathcal{C},A_n\uparrow,\bigcup_{n=1}^\infty A_n \in \mathcal{C}\\ A_n\in\mathcal{C},A_n\downarrow,\bigcap_{n=1}^\infty A_n \in \mathcal{C} \end{cases} {AnC,An,n=1AnCAnC,An,n=1AnC)
  7. λ \lambda λ ( Ⅰ ) { ①   对 补 封 闭 ; ②   A , B ∈ C , A ∩ B = ∅ ⇒ A ∪ B ∈ C ( 不 交 的 并 封 闭 ) ; ③   A n ∈ C , A n ↑ , ⋃ n = 1 ∞ A n ∈ C ( 单 调 上 升 序 列 的 极 限 封 闭 ) . (Ⅰ)\begin{cases} ① \ 对补封闭;\\ ② \ A,B\in \mathcal{C},A\cap B = \emptyset\Rightarrow A\cup B\in \mathcal{C}(不交的并封闭);\\ ③ \ A_n\in\mathcal{C},A_n\uparrow,\bigcup_{n=1}^\infty A_n \in \mathcal{C}(单调上升序列的极限封闭).\\ \end{cases} () ; A,BC,AB=ABC(); AnC,An,n=1AnC().
       ⇕ ( Ⅱ ) { ① ′   Ω ∈ C ; ② ′   A , B ∈ C , B ⊂ A ⇒ A \ B ∈ C ( 真 差 并 封 闭 ) ; ③   A n ∈ C , A n ↑ , ⋃ n = 1 ∞ A n ∈ C ( 单 调 上 升 序 列 的 极 限 封 闭 ) . \ \ \Updownarrow(Ⅱ)\begin{cases} ①' \ \Omega \in \mathcal{C};\\ ②' \ A,B\in \mathcal{C},B\subset A \Rightarrow A\backslash B\in \mathcal{C}(真差并封闭);\\ ③ \ A_n\in\mathcal{C},A_n\uparrow,\bigcup_{n=1}^\infty A_n \in \mathcal{C}(单调上升序列的极限封闭).\\ \end{cases}   () ΩC; A,BC,BAA\BC(); AnC,An,n=1AnC().
    (为什么要分 λ \lambda λ类?)

1.2 单调类定理

相关定义

P ( Ω ) : Ω \mathcal{P}(\Omega):\Omega P(Ω):Ω 的所有子集组成的集类
σ ( C ) : \sigma(\mathcal{C}): σ(C): 给定集类 C \mathcal{C} C一定存在一个最小的 σ \sigma σ 域包含 C \mathcal{C} C ,称为 C \mathcal{C} C 生成的 σ \sigma σ,记为 σ ( C ) \sigma(\mathcal{C}) σ(C)
⇒ \Rightarrow 存在 C \mathcal{C} C 生成的单调类 m ( C ) m(\mathcal{C}) m(C) λ \lambda λ λ ( C ) \lambda(\mathcal{C}) λ(C) σ \sigma σ代数 σ ( C ) \sigma(\mathcal{C}) σ(C)
且恒有 m ( C ) ⊂ λ ( C ) ⊂ σ ( C ) m(\mathcal{C})\subset\lambda(\mathcal{C})\subset\sigma(\mathcal{C}) m(C)λ(C)σ(C) (条件越多,需要的其中的集合更多)
证:
X \mathscr{X} X为包含 C \mathcal{C} C σ \sigma σ域的全体,则 X \mathscr{X} X非空(至少 P ( Ω ) ∈ X \mathcal{P}(\Omega)\in \mathscr{X} P(Ω)X)
G = ⋂ B ∈ X B \mathcal{G} = \bigcap_{\mathcal{B}\in \mathscr{X}}\mathcal{B} G=BXB,则 C ⊂ G \mathcal{C}\subset\mathcal{G} CG,可证 G = σ ( C ) \mathcal{G} = \sigma(\mathcal{C}) G=σ(C).

思考 (整理后即为定理1.2.3)
(1)若 C \mathcal{C} C 是代数,且为单调类(单增),设可列 { A n } ∈ C \{A_n\}\in \mathcal{C} {An}C,是否有 ⋃ n = 1 ∞ A n ∈ C \bigcup_{n=1}^\infty A_n \in \mathcal{C} n=1AnC?(即 是否对可列并封闭?)
C \mathcal{C} C为 代数 + 单调类 ⇒ \Rightarrow C \mathcal{C} C σ \sigma σ代数 ?

B n = ⋃ k = 1 n A k B_n = \bigcup_{k=1}^n A_k Bn=k=1nAk
B n ↑ , B n ∈ C B_n\uparrow ,B_n\in \mathcal{C} Bn,BnC ⋃ n = 1 ∞ B n = ⋃ n = 1 ∞ A n ∈ C \bigcup_{n=1}^\infty B_n=\bigcup_{n=1}^\infty A_n\in \mathcal{C} n=1Bn=n=1AnC. 即此时 C \mathcal{C} C σ \sigma σ 代数.

(2) C \mathcal{C} C π \pi π类 + λ \lambda λ    ⟺    \iff C \mathcal{C} C σ \sigma σ代数
⇐ : \Leftarrow: : C \mathcal{C} C σ \sigma σ代数,则 C \mathcal{C} C 必为 π \pi π 类/ λ \lambda λ
  ⇒ : \quad \,\Rightarrow: : 对非空集类 C , ∃ A ∈ C . \mathcal{C},\exist A\in \mathcal{C}. C,AC. λ \lambda λ 类性质①, A c ∈ C , Ω ∈ C \color{blue}A^c\in \mathcal{C},\Omega \in \mathcal{C} AcC,ΩC;由 π \pi π 类性质, A ∩ A c = ∅ ∈ C A\cap A^c = \color{blue}\emptyset \in \mathcal{C} AAc=C.
下证 C 对 可 列 交 封 闭 \mathcal{C} \color{blue}{对可列交封闭} C
{ A n } ∈ C \{A_n\}\in \mathcal{C} {An}C,令 B n = ⋃ k = 1 n A k B_n = \bigcup^n_{k=1} A_k Bn=k=1nAk,则有 B n ↑ . B_n\uparrow. Bn. λ \lambda λ 类性质③, ⋃ n = 1 ∞ A n = ⋃ n = 1 ∞ B n ∈ C ⇒ ( ⋃ n = 1 ∞ A n ) c = ⋂ n = 1 ∞ A n c ∈ C \bigcup^\infty_{n=1} A_n=\bigcup^\infty_{n=1} B_n\in\mathcal{C}\Rightarrow(\bigcup^\infty_{n=1} A_n)^c=\bigcap^\infty_{n=1} A_n^c\in\mathcal{C} n=1An=n=1BnC(n=1An)c=n=1AncC.

单调类定理

定理1.2.1
C \mathcal{C} C 为一集类
(1)若 C \mathcal{C} C 为代数,则 m ( C ) = σ ( C ) . m(\mathcal{C})=\sigma(\mathcal{C}). m(C)=σ(C).
(2)若 C \mathcal{C} C π \pi π 类,则 λ ( C ) = σ ( C ) . \lambda(\mathcal{C})=\sigma(\mathcal{C}). λ(C)=σ(C).
证(1):
m ( C ) ⊂ σ ( C ) m(\mathcal{C})\subset\sigma(\mathcal{C}) m(C)σ(C) 恒成立
② 下证 σ ( C ) ⊂ m ( C ) \sigma(\mathcal{C})\subset m(\mathcal{C}) σ(C)m(C)
思考(1) 可知,若 m ( C ) m(\mathcal{C}) m(C)是代数,则 m ( C ) m(\mathcal{C}) m(C) σ \sigma σ 代数,即可成立 σ ( C ) ⊂ m ( C ) \sigma(\mathcal{C})\subset m(\mathcal{C}) σ(C)m(C); 由此,下 m ( C ) m(\mathcal{C}) m(C)是代数
(即证 ∀ A ∈ m ( C ) , A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) \forall A \in m(\mathcal{C}),A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C}) Am(C),Acm(C),ABm(C),Bm(C)
构造 M : = { A ∈ m ( C ) ∣ A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) } \mathcal{M}:=\left\{A\in m(\mathcal{C})|A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})\right\} M:={Am(C)Acm(C),ABm(C),Bm(C)}
(    ⟺    M = { A ∣ A ∈ m ( C ) , A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) ) \color{blue}(\iff\mathcal{M}=\{A|A\in m(\mathcal{C}),A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})) (M={AAm(C),Acm(C),ABm(C),Bm(C))
首先有 M ⊂ m ( C ) \mathcal{M}\subset m(\mathcal{C}) Mm(C),是否有 m ( C ) ⊂ M ? m(\mathcal{C})\subset \mathcal{M}? m(C)M? { ( 1.1 ) C ⊂ M ( 1.2 ) M 是 单 调 类 \begin{cases} (1.1)\mathcal{C}\subset\mathcal{M}\\ (1.2)\mathcal{M}是单调类 \end{cases} {(1.1)CM(1.2)M
(由 C \mathcal{C} C 是代数可知,有限并封闭不一定成立,即无法证明 M \mathcal{M} M是代数)

  1. (1.1)’ 构造 M 1 : = { A ∈ m ( C ) ∣ A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ C } \mathcal{M}_1:=\left\{A\in m(\mathcal{C})|A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in \mathcal{C}\right\} M1:={Am(C)Acm(C),ABm(C),BC},则有 C ⊂ M 1 \mathcal{C}\subset\mathcal{M}_1 CM1
    (    ⟺    M 1 = { A ∣ A ∈ m ( C ) , A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ C ) \color{blue}(\iff\mathcal{M}_1=\{A|A\in m(\mathcal{C}),A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in \mathcal{C}) (M1={AAm(C),Acm(C),ABm(C),BC)

  2. (1.2)’ 取 { A n } ∈ M 1 , A n ↑ \{A_n\}\in \mathcal{M}_1,A_n\uparrow {An}M1,An,则 A n c ∈ m ( C ) , A n ∪ B ∈ m ( C ) , ∀ B ∈ C A_n^c\in m(\mathcal{C}),A_n\cup B\in m(\mathcal{C}),\forall B\in \mathcal{C} Ancm(C),AnBm(C),BC
    ( ⋃ A n ) c = ⋂ A n c ∈ m ( C ) , ( ⋃ A n ) ∪ B = ⋃ ( A n ∪ B ) ∈ m ( C ) , ∀ B ∈ C (\bigcup A_n)^c = \bigcap A_n^c\in m(\mathcal{C}),(\bigcup A_n)\cup B=\bigcup (A_n\cup B)\in m(\mathcal{C}),\forall B\in \mathcal{C} (An)c=Ancm(C),(An)B=(AnB)m(C),BC,可知 ⋃ A n ∈ M 1 \bigcup A_n\in\mathcal{M}_1 AnM1;因此 M 1 \mathcal{M}_1 M1 是单调类
    由(1.1)’, (1.2)’ 知 m ( C ) ⊂ M 1 m(\mathcal{C})\subset \mathcal{M}_1 m(C)M1,因此 m ( C ) = M 1 m(\mathcal{C})= \mathcal{M}_1 m(C)=M1;由 M 1 \mathcal{M}_1 M1性质可知 m ( C ) m(\mathcal{C}) m(C) 对补封闭。

  3. (1.1)’’ 构造 M 2 : = { A ∈ m ( C ) ∣ A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) } \mathcal{M}_2:=\left\{A\in m(\mathcal{C})|A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})\right\} M2:={Am(C)ABm(C),Bm(C)}
    (    ⟺    M 2 = { A ∣ A ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) } \color{blue}(\iff\mathcal{M}_2=\{A|A\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})\} (M2={AAm(C),ABm(C),Bm(C)}
    任取 A ∈ C ⊂ m ( C ) = M 1 , A\in\mathcal{C}\subset m(\mathcal{C})=\mathcal{M}_1, ACm(C)=M1 M 1 \mathcal{M}_1 M1的性质可知, A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C}) ABm(C),Bm(C),即 A ∈ M 2 ⇒ C ⊂ M 2 A\in \mathcal{M}_2\Rightarrow\mathcal{C}\subset\mathcal{M}_2 AM2CM2

  4. (1.2)’'类似可证 M 2 \mathcal{M}_2 M2是单调类
    同理有 m ( C ) = M 2 m(\mathcal{C})= \mathcal{M}_2 m(C)=M2;由 M 1 \mathcal{M}_1 M1性质可知 m ( C ) m(\mathcal{C}) m(C) 对有限并封闭。

⇒ m ( C ) = M 1 = M 2 \textcolor{blue}{\Rightarrow m(\mathcal{C})=\mathcal{M}_1=\mathcal{M}_2} m(C)=M1=M2

由1-4可知, m ( C ) m(\mathcal{C}) m(C) 是代数。#

证(2): (同上证明)
λ ( C ) ⊂ σ ( C ) \lambda(\mathcal{C})\subset\sigma(\mathcal{C}) λ(C)σ(C) 恒成立
② 下证 σ ( C ) ⊂ λ ( C ) \sigma(\mathcal{C})\subset \lambda(\mathcal{C}) σ(C)λ(C)
由思考(2)可知,若 λ ( C ) \lambda(\mathcal{C}) λ(C) π \pi π 类,则 λ ( C ) \lambda(\mathcal{C}) λ(C) σ \sigma σ 域,此时成立 σ ( C ) ⊂ λ ( C ) \sigma(\mathcal{C})\subset \lambda(\mathcal{C}) σ(C)λ(C);由此下证 λ ( C ) \lambda(\mathcal{C}) λ(C) 对有限交封闭
(即证 ∀ A , B ∈ λ ( C ) \forall A,B \in \lambda(\mathcal{C}) A,Bλ(C),成立 A ∩ B ∈ λ ( C ) A\cap B\in \lambda(\mathcal{C}) ABλ(C)
构造 G : = { A ∈ λ ( C ) ∣ A ∩ B ∈ λ ( C ) , ∀ B ∈ λ ( C ) } \mathcal{G}:=\{A\in\lambda(\mathcal{C})|A\cap B\in \lambda(\mathcal{C}),\forall B\in\lambda(\mathcal{C})\} G:={Aλ(C)ABλ(C),Bλ(C)}
(    ⟺    G = { A ∣ A ∈ λ ( C ) , A ∩ B ∈ λ ( C ) , ∀ B ∈ λ ( C ) ) \color{blue}(\iff\mathcal{G}=\{A|A\in\lambda(\mathcal{C}),A\cap B\in \lambda(\mathcal{C}),\forall B\in\lambda(\mathcal{C})) (G={AAλ(C),ABλ(C),Bλ(C))
首先有 G ⊂ λ ( C ) \mathcal{G}\subset\lambda(\mathcal{C}) Gλ(C),是否有 λ ( C ) ⊂ G ? { ( 2.1 ) C ⊂ G ( 2.2 ) G 是 λ 类 \lambda(\mathcal{C})\subset\mathcal{G}?\begin{cases} (2.1)\mathcal{C}\subset\mathcal{G}\\ (2.2)\mathcal{G}是\lambda 类 \end{cases} λ(C)G?{(2.1)CG(2.2)Gλ
λ \lambda λ 类不保证有限交封闭)

  1. (2.1) '构造 G 1 : = { A ∈ λ ( C ) ∣ A ∩ B ∈ λ ( C ) , ∀ B ∈ C } \mathcal{G}_1:=\{A\in\lambda(\mathcal{C})|A\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}\} G1:={Aλ(C)ABλ(C),BC}
    (    ⟺    G 1 = { A ∣ A ∈ λ ( C ) , A ∩ B ∈ λ ( C ) , ∀ B ∈ C } ) \color{blue}(\iff\mathcal{G}_1=\{A|A\in\lambda(\mathcal{C}),A\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}\}) (G1={AAλ(C),ABλ(C),BC})
    任取 A ∈ C A\in \mathcal{C} AC,由 C \mathcal{C} C π \pi π 类可知 A ∩ B ∈ C ⊂ λ ( C ) , ∀ B ∈ C A\cap B\in \mathcal{C}\subset\lambda(\mathcal{C}),\forall B\in\mathcal{C} ABCλ(C),BC,即 A ∈ G 1 ⇒ C ⊂ G 1 A\in \mathcal{G}_1\Rightarrow \mathcal{C}\subset\mathcal{G}_1 AG1CG1
  2. (2.2) '①任取 A ∈ G 1 A\in \mathcal{G}_1 AG1,要证 A c ∈ G 1 A^c\in \mathcal{G}_1 AcG1,即 A c ∈ λ ( C ) , A c ∩ B ∈ λ ( C ) , ∀ B ∈ C A^c\in\lambda(\mathcal{C}),A^c\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C} Acλ(C),AcBλ(C),BC.
    λ ( C ) \lambda(\mathcal{C}) λ(C)性质知 A c ∈ λ ( C ) A^c\in \lambda(\mathcal{C}) Acλ(C),同理对 ∀ B ∈ C ⊂ λ ( C ) \forall B\in\mathcal{C}\subset\lambda (\mathcal{C}) BCλ(C),有 B c ∈ λ ( C ) , ( A c ∩ B ) c = A ∪ B c = ( A ∩ B ) ∪ B c ∈ λ ( C ) B^c\in\lambda (\mathcal{C}),(A^c\cap B)^c=A\cup B^c=(A\cap B)\cup B^c\in \lambda(\mathcal{C}) Bcλ(C),(AcB)c=ABc=(AB)Bcλ(C) ( 不 交 的 并 封 闭 ) \color{green}(不交的并封闭) ,得证。
    ( A = A ∩ Ω = ( A ∩ B ) ∪ ( A ∩ B c ) \color{green}A = A\cap\Omega =(A\cap B)\cup (A\cap B^c) A=AΩ=(AB)(ABc))
    ②任取 A 1 , A 2 ∈ G 1 , 且 A 1 ∩ A 2 = ∅ A_1,A_2\in\mathcal{G}_1,且A_1\cap A_2=\empty A1,A2G1,A1A2=. 要证 A 1 ∪ A 2 ∈ G 1 A_1\cup A_2\in \mathcal{G}_1 A1A2G1,即 A 1 ∪ A 2 ∈ λ ( C ) , ( A 1 ∪ A 2 ) ∩ B ∈ λ ( C ) , ∀ B ∈ C A_1\cup A_2\in\lambda(\mathcal{C}),(A_1\cup A_2)\cap B\in \lambda(\mathcal{C}),\forall B\in \mathcal{C} A1A2λ(C),(A1A2)Bλ(C),BC.
    λ ( C ) \lambda(\mathcal{C}) λ(C)对不交并封闭知, A 1 ∪ A 2 ∈ λ ( C ) A_1\cup A_2\in\lambda(\mathcal{C}) A1A2λ(C);又 ∀ B ∈ C : ( A 1 ∩ B ) ∩ ( A 2 ∩ B ) = ∅ , ( A 1 ∪ A 2 ) ∩ B = ( A 1 ∩ B ) ∪ ( A 2 ∩ B ) ∈ λ ( C ) ( 不 交 的 并 封 闭 ) . \forall B\in\mathcal{C}:(A_1\cap B)\cap(A_2\cap B)=\empty ,(A_1\cup A_2)\cap B = (A_1\cap B)\cup(A_2\cap B)\in \lambda(\mathcal{C})\textcolor{green} {(不交的并封闭)}. BC:(A1B)(A2B)=,(A1A2)B=(A1B)(A2B)λ(C).得证。
    ③任取 { A n } ∈ G 1 , 且 A n ↑ \{A_n\}\in\mathcal{G}_1,且A_n\uparrow {An}G1,An,要证 ⋃ n A n ∈ G 1 \bigcup_nA_n\in\mathcal{G}_1 nAnG1,即 ⋃ n A n ∈ λ ( C ) , ( ⋃ n A n ) ∩ B ∈ λ ( C ) , ∀ B ∈ C . \bigcup_nA_n\in \lambda(\mathcal{C}),(\bigcup_nA_n)\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}. nAnλ(C),(nAn)Bλ(C),BC.
    λ ( C ) \lambda(\mathcal{C}) λ(C)性质知 ⋃ n A n ∈ λ ( C ) , ( ⋃ n A n ) ∩ B = ⋃ n ( A n ∩ B ) ∈ λ ( C ) ( 不 降 序 列 的 极 限 封 闭 ) , ∀ B ∈ C \bigcup_nA_n\in \lambda(\mathcal{C}),(\bigcup_nA_n)\cap B=\bigcup_n(A_n\cap B)\in \lambda(\mathcal{C}) \textcolor{green} {(不降序列的极限封闭)},\forall B\in\mathcal{C} nAnλ(C),(nAn)B=n(AnB)λ(C),BC,得证。

由1-2知, G 1 = λ ( C ) \mathcal{G}_1 = \lambda(\mathcal{C}) G1=λ(C).
3. (2.1) 任取 A ∈ C , 则 A ∈ λ ( C ) , 且 ∀ B ∈ λ ( C ) = G 1 : A ∩ B ∈ λ ( C ) ⇒ A ∈ G A\in \mathcal{C},则A\in\lambda(\mathcal{C}),且\forall B\in \lambda(\mathcal{C})=\mathcal{G}_1 :A\cap B\in \lambda(\mathcal{C})\Rightarrow A\in\mathcal{G} AC,Aλ(C),Bλ(C)=G1:ABλ(C)AG
4. (2.2) 同(2.2)'可证 G \mathcal{G} G λ \lambda λ类。
由3-4知, G = λ ( C ) \mathcal{G} = \lambda(\mathcal{C}) G=λ(C).
⇒ λ ( C ) = G = G 1 \textcolor{blue}{\Rightarrow \lambda(\mathcal{C})=\mathcal{G}=\mathcal{G}_1} λ(C)=G=G1
因此 λ ( C ) \lambda(\mathcal{C}) λ(C) 对有限交封闭。#

定理1.2.1称为单调类定理

有推论如下:
定理1.2.2
C , F \mathcal{C,F} C,F 为两个集类,且 C ⊂ F \mathcal{C}\subset\mathcal{F} CF:
(1)若 C \mathcal{C} C 为代数,且 F \mathcal{F} F 为单调类,则 σ ( C ) ⊂ F ; \sigma(\mathcal{C})\subset\mathcal{F}; σ(C)F;
(2)若 C \mathcal{C} C π \pi π 类,且 F \mathcal{F} F λ \lambda λ 类,则 σ ( C ) ⊂ F ; \sigma(\mathcal{C})\subset\mathcal{F}; σ(C)F;

由定理1.2.1的证明可知,(即“思考”整理后的定理)
定理1.2.3
C \mathcal{C} C 为一集类:
(1) m ( C ) = σ ( C )    ⟺    m ( C ) 为 一 个 代 数 m(\mathcal{C}) = \sigma(\mathcal{C})\iff \textcolor{gray}{m(\mathcal{C})为一个代数} m(C)=σ(C)m(C)
   ⟺    A ∈ C ⇒ A c ∈ m ( C ) ; A , B ∈ C ⇒ A ∩ B ∈ m ( C ) \quad \quad \quad \quad \quad \quad \quad \quad\iff A\in \mathcal{C}\Rightarrow A^c\in m(\mathcal{C});A,B\in\mathcal{C}\Rightarrow A\cap B\in m(\mathcal{C}) ACAcm(C);A,BCABm(C)
   ⟺    A ∈ C ⇒ A c ∈ m ( C ) ; A , B ∈ C ⇒ A ∪ B ∈ m ( C ) \color{gray}\quad \quad \quad \quad \quad \quad \quad \quad\iff A\in \mathcal{C}\Rightarrow A^c\in m(\mathcal{C});A,B\in\mathcal{C}\Rightarrow A\cup B\in m(\mathcal{C}) ACAcm(C);A,BCABm(C)

(2) λ ( C ) = σ ( C )    ⟺    λ ( C ) 为 一 个 π 类 \lambda(\mathcal{C}) = \sigma(\mathcal{C})\iff \textcolor{gray}{\lambda(\mathcal{C})为一个 \pi类} λ(C)=σ(C)λ(C)π
   ⟺    A , B ∈ C ⇒ A ∩ B ∈ λ ( C ) \quad \quad \quad \quad \quad \quad \quad \quad\iff A,B\in\mathcal{C}\Rightarrow A\cap B \in\lambda(\mathcal{C}) A,BCABλ(C)
   ⟺    A , B ∈ C ⇒ A ∪ B ∈ λ ( C ) \color{gray}\quad \quad \quad \quad \quad \quad \quad \quad\iff A,B\in\mathcal{C}\Rightarrow A\cup B \in\lambda(\mathcal{C}) A,BCABλ(C)

上述定理在实际中运用较少,而如下推论常在实例中运用:
定理1.2.5
C \mathcal{C} C 为一集类,若满足下列条件之一,则有 m ( C ) = σ ( C ) : m(\mathcal{C}) = \sigma(\mathcal{C}): m(C)=σ(C):
(1) A , B ∈ C ⇒ A ∩ B ∈ C ; A ∈ C ⇒ A c ∈ C δ A,B\in \mathcal{C}\Rightarrow A\cap B\in \mathcal{C};A\in \mathcal{C}\Rightarrow A^c\in \mathcal{C}_\delta A,BCABC;ACAcCδ
(2) A , B ∈ C ⇒ A ∪ B ∈ C ; A ∈ C ⇒ A c ∈ C σ A,B\in \mathcal{C}\Rightarrow A\cup B\in \mathcal{C};A\in \mathcal{C}\Rightarrow A^c\in \mathcal{C}_\sigma A,BCABC;ACAcCσ
证:若 C \mathcal{C} C 对有限交封闭,则 C δ ⊂ m ( C ) \mathcal{C}_\delta\subset m(\mathcal{C}) Cδm(C);若 C \mathcal{C} C 对有限并封闭,则 C σ ⊂ m ( C ) \mathcal{C}_\sigma\subset m(\mathcal{C}) Cσm(C).

Lesson 4:Chp1

1.3 测度与非负集函数

相关定义

可测空间 :设 F \mathcal{F} F Ω \Omega Ω 上的一 σ \sigma σ 代数,则( Ω , F \Omega,\mathcal{F} Ω,F)为一可测空间
F \mathcal{F} F可测集 :( Ω , F \Omega,\mathcal{F} Ω,F)中元素即称 F \mathcal{F} F 可测集
可分的/可数可分的 ∃   F \exist \ \mathcal{F}  F 的可数子类 C \mathcal{C} C s . t . F = σ ( C ) s.t. \mathcal{F}=\sigma(\mathcal{C}) s.t.F=σ(C)
可分可测空间:若 F \mathcal{F} F 可分,则( Ω , F \Omega,\mathcal{F} Ω,F)为一可分可测空间

测度

定义1.3.1
设( Ω , F \Omega,\mathcal{F} Ω,F)为一可测空间, μ : F ↦ R + \mu:\mathcal{F}\mapsto\mathbb{R}_+ μ:FR+,若满足
μ ( ∅ ) = 0 \mu (\empty) = 0 μ()=0
② 可数可加性/ σ \sigma σ可加性: { A n } ∈ F , A n ∩ A m = ∅ , n ≠ m ⇒ μ ( ∑ n = 1 ∞ A n ) = ∑ n = 1 ∞ μ ( A n ) \{A_n\}\in\mathcal{F},A_n\cap A_m = \empty,n\not=m\Rightarrow\mu(\sum_{n=1}^\infty A_n) = \sum_{n=1}^\infty\mu(A_n) {An}F,AnAm=,n=mμ(n=1An)=n=1μ(An)
则称 μ \mu μ 为( Ω , F \Omega,\mathcal{F} Ω,F)上的测度

( Ω , F ) (\Omega,\mathcal{F}) (Ω,F) μ \mu μ 的基本性质:
(1) 单调性 A , B ∈ F , A ⊂ B ⇒ μ ( A ) ⩽ μ ( B ) . A,B\in\mathcal{F},A\subset B\Rightarrow \mu(A)\leqslant\mu(B). A,BF,ABμ(A)μ(B).
(2) 可减性 A , B ∈ F , A ⊂ B , μ ( B ) < ∞ ⇒ μ ( B \ A ) = μ ( B ) − μ ( A ) . A,B\in\mathcal{F},A\subset B,\mu(B)<\infty\Rightarrow \mu(B\backslash A)=\mu(B)-\mu(A). A,BF,AB,μ(B)<μ(B\A)=μ(B)μ(A).

测度空间: ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) (Ω,F,μ)
有限测度空间: μ ( Ω ) < ∞ 的 ( Ω , F , μ ) \mu(\Omega)<\infty的(\Omega,\mathcal{F},\mu) μ(Ω)<(Ω,F,μ) μ \mu μ 称为有限测度
概率空间: μ ( Ω ) = 1 的 ( Ω , F , μ ) \mu(\Omega)=1的(\Omega,\mathcal{F},\mu) μ(Ω)=1(Ω,F,μ) μ \mu μ 称为概率测度
σ \sigma σ 有限测度空间: ∃ { A n } ∈ F , s . t . ⋃ n A n = Ω 且   ∀ n ≥ 1 : μ ( A n ) < ∞ 的 ( Ω , F , μ ) \exist\{A_n\}\in\mathcal{F},s.t.\bigcup_n A_n=\Omega且 \ \forall n\ge1:\mu(A_n)<\infty的(\Omega,\mathcal{F},\mu) {An}F,s.t.nAn=Ω n1:μ(An)<(Ω,F,μ) μ \mu μ 称为 σ \sigma σ 有限测度

有限测度与概率测度转化:
A ∈ F A\in \mathcal{F} AF,设 ν ( A ) = μ ( A ) μ ( Ω ) ( = μ ( A ∩ Ω ) μ ( Ω ) = ν ( A ∩ Ω ) ) \nu(A) =\dfrac{\mu(A)}{\mu(\Omega)}\left(=\dfrac{\mu(A\cap\Omega)}{\mu(\Omega)} = \nu(A\cap \Omega)\right) ν(A)=μ(Ω)μ(A)(=μ(Ω)μ(AΩ)=ν(AΩ)),得 ν \nu ν 为概率测度。

σ \sigma σ 有限测度与概率测度转化:
引理1.3.5
对于 ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) (Ω,F,μ),取 Ω \Omega Ω 的一个可数划分 { A n } , s . t . Ω = ∑ n ∞ A n , 且   ∀ n ≥ 1 : μ ( A n ) < ∞ , A n ∈ F . ∀ A ∈ F : 令   ν ( A ∩ A m ) = μ ( A ∩ A m ) 2 m μ ( A m ) \{A_n\},s.t.\Omega = \sum_n^\infty A_n,且\ \forall n\ge1:\mu(A_n)<\infty,A_n\in\mathcal{F}.\forall A\in \mathcal{F}:令\ \nu(A\cap A_m) = \dfrac{\mu(A\cap A_m)}{2^m\mu(A_m)} {An}s.t.Ω=nAn, n1:μ(An)<AnF.AF: ν(AAm)=2mμ(Am)μ(AAm),即
ν ( A ) = ( ∑ n = 1 ∞ ν ( A ∩ A n ) = ) ∑ n = 1 ∞ μ ( A ∩ A n ) 2 n μ ( A n ) \nu(A) =\left( \sum_{n=1}^\infty\nu(A\cap A_n) =\right) \sum_{n=1}^\infty \dfrac{\mu(A\cap A_n)}{2^n\mu(A_n)} ν(A)=(n=1ν(AAn)=)n=12nμ(An)μ(AAn)
ν \nu ν ( Ω , F ) (\Omega,\mathcal{F}) (Ω,F) 上的一个概率测度,同时有 ν ( A ) = 0    ⟺    μ ( A ) = 0 \nu(A)=0\iff\mu(A)=0 ν(A)=0μ(A)=0 ∀ A ∈ F : \forall A\in \mathcal{F}: AF:
μ ( A ) = ( ∑ n = 1 ∞ μ ( A ∩ A n ) = ) ∑ n = 1 ∞ 2 n μ ( A n ) ν ( A ∩ A n ) \mu(A) =\left( \sum_{n=1}^\infty\mu(A\cap A_n) =\right) \sum_{n=1}^\infty 2^n\mu(A_n)\nu(A\cap A_n) μ(A)=(n=1μ(AAn)=)n=12nμ(An)ν(AAn)

当前目标: ( C , μ ) → 扩 张 ( σ ( C ) , μ ~ ) (\mathcal{C},\mu)\xrightarrow[扩张]{}(\sigma(\mathcal{C}),\tilde{\mu}) (C,μ) (σ(C),μ~)(从简单集类扩张至性质较好的集类)

非负集函数

定义1.3.2(集函数分类)
C \mathcal{C} C :任一集类;
μ : C ↦ [ 0 , ∞ ) \mu:\mathcal{C}\mapsto[0,\infty) μ:C[0,)集函数;
要求: ∅ ∈ C , μ ( ∅ ) = 0 ; A , B ∈ C , A ⊂ B ⇒ μ ( A ) ⩽ μ ( B ) ; \empty\in\mathcal{C},\mu(\empty)=0;A,B\in \mathcal{C},A\subset B\Rightarrow\mu(A)\leqslant\mu(B); C,μ()=0;A,BC,ABμ(A)μ(B);

  1. 有限可加的 ( μ ) : A i ∈ C , 1 ⩽ i ⩽ n , ∑ i = 1 n A i ∈ C ⇒ μ ( ∑ i = 1 n A i ) = ∑ i = 1 n μ ( A i ) ; (\mu):A_i\in\mathcal{C},1\leqslant i\leqslant n,\sum_{i=1}^n A_i\in\mathcal{C}\Rightarrow\mu(\sum_{i=1}^n A_i)=\sum_{i=1}^n \mu(A_i); (μ):AiC,1in,i=1nAiCμ(i=1nAi)=i=1nμ(Ai);
  2. σ \sigma σ 可加的 ( μ ) : A i ∈ C , i ∈ N , ∑ i = 1 ∞ A i ∈ C ⇒ μ ( ∑ i = 1 ∞ A i ) = ∑ i = 1 ∞ μ ( A i ) ; 即 测 度 性 质 (\mu):A_i\in\mathcal{C},i\in\mathbb{N},\sum_{i=1}^\infty A_i\in\mathcal{C}\Rightarrow\mu(\sum_{i=1}^\infty A_i)=\sum_{i=1}^\infty \mu(A_i);\color{blue}即测度性质 (μ):AiC,iN,i=1AiCμ(i=1Ai)=i=1μ(Ai);
  3. σ \sigma σ 可加的 ( μ ) : A i ∈ C , i ∈ N ; A ∈ C , A ⊂ ⋃ i = 1 ∞ A i ⇒ μ ( A ) ⩽ ∑ i = 1 ∞ μ ( A i ) ; (\mu):A_i\in\mathcal{C},i\in\mathbb{N};A\in\mathcal{C},A\subset\bigcup_{i=1}^\infty A_i \Rightarrow\mu(A)\leqslant\sum_{i=1}^\infty \mu(A_i); (μ):AiC,iN;AC,Ai=1Aiμ(A)i=1μ(Ai);
  4. 从下连续 ( μ ) : A n ∈ C , A n ↑ A ∈ C ⇒ μ ( A ) = lim ⁡ n → ∞ μ ( A n ) ; (\mu):A_n\in\mathcal{C},A_n\uparrow A\in\mathcal{C} \Rightarrow\mu(A)=\lim_{n\to\infty}\mu(A_n); (μ):AnC,AnACμ(A)=limnμ(An);
  5. 从上连续 ( μ ) : A n ∈ C , A n ↓ A ∈ C , μ ( A 1 ) < ∞ ⇒ μ ( A ) = lim ⁡ n → ∞ μ ( A n ) ; (\mu):A_n\in\mathcal{C},A_n\downarrow A\in\mathcal{C},\mu(A_1)<\infty\Rightarrow\mu(A)=\lim_{n\to\infty}\mu(A_n); (μ):AnC,AnAC,μ(A1)<μ(A)=limnμ(An);
  6. 在空集处连续 ( μ ) : A n ∈ C , A n ↓ ∅ ∈ C , μ ( A 1 ) < ∞ ⇒ ( μ ( ∅ ) = ) lim ⁡ n → ∞ μ ( A n ) = 0 ; (\mu):A_n\in\mathcal{C},A_n\downarrow \empty\in\mathcal{C},\mu(A_1)<\infty\Rightarrow(\mu(\empty)=)\lim_{n\to\infty}\mu(A_n)=0; (μ):AnC,AnC,μ(A1)<(μ()=)limnμ(An)=0;

(3)从下连续:取 A i ∈ F , A i ↑ A = ⋃ i A i ∈ F ( σ 代 数 性 质 ) ⇒ μ ( A ) = lim ⁡ i → ∞ μ ( A i ) A_i \in \mathcal{F},A_i\uparrow A=\bigcup_i A_i\in \mathcal{F}\textcolor{blue}{(\sigma代数性质)}\Rightarrow\mu(A)=\lim_{i\to\infty}\mu(A_i) AiF,AiA=iAiF(σ)μ(A)=limiμ(Ai)

证明:构造 B 1 = A 1 , B 2 = A 2 \ A 1 , . . . , B n = A n \ A n − 1 , . . . B_1=A_1,B_2 = A2\backslash A_1,...,B_n = A_n\backslash A_{n-1},... B1=A1,B2=A2\A1,...,Bn=An\An1,...
⋃ A i = ⋃ B i = ∑ B i , μ ( ⋃ A i ) = μ ( ∑ B i ) = ∑ i = 1 ∞ μ ( B i ) = μ ( A 1 ) + ∑ i = 2 ∞ μ ( A i ) − μ ( A i − 1 ) = lim ⁡ i → ∞ μ ( A i ) \bigcup A_i=\bigcup B_i=\sum B_i,\mu(\bigcup A_i)=\mu(\sum B_i)=\sum_{i=1}^\infty\mu(B_i)=\mu(A_1)+\sum_{i=2}^\infty\mu(A_i)-\mu(A_{i-1})=\lim_{i\to\infty}\mu(A_i) Ai=Bi=Bi,μ(Ai)=μ(Bi)=i=1μ(Bi)=μ(A1)+i=2μ(Ai)μ(Ai1)=limiμ(Ai)

(4)从上连续:取 A i ∈ F , A i ↓ A = ⋂ i A i ∈ F ( σ 代 数 性 质 ) , μ ( A 1 ) < ∞ ⇒ μ ( A ) = lim ⁡ i → ∞ μ ( A i ) A_i \in \mathcal{F},A_i\downarrow A=\bigcap_i A_i\in \mathcal{F}\textcolor{blue}{(\sigma代数性质)},\mu(A_1)<\infty\Rightarrow\mu(A)=\lim_{i\to\infty}\mu(A_i) AiF,AiA=iAiF(σ),μ(A1)<μ(A)=limiμ(Ai)

同(3)可证。

定理1.3.4 (对于普通集类上的集函数)
C \mathcal{C} C为一代数, μ \mu μ C \mathcal{C} C 上一有限可加的非负集函数,则:
μ \mu μ 从下连续    ⟺    μ \iff\mu μ 为可列可加的 ⇒ μ \Rightarrow \mu μ 从上连续 ⇒ μ \Rightarrow\mu μ ∅ \empty 处连续
②若 μ ( Ω ) < ∞ \mu(\Omega)<\infty μ(Ω)<,则:
μ \mu μ 从下连续    ⟺    μ \iff\mu μ 为可列可加的    ⟺    μ \iff \mu μ 从上连续    ⟺    μ \iff\mu μ ∅ \empty 处连续

证:设 μ \mu μ 从下连续,取 A n ∈ C A_n\in\mathcal{C} AnC,且满足 ∑ n = 1 ∞ A n ∈ C . \sum_{n=1}^\infty A_n\in\mathcal{C}. n=1AnC. B n = ∑ k = 1 n A k , 则 B n ↑ ∈ C , ⋃ n B n = ∑ n = 1 ∞ A n : B_n = \sum_{k=1}^n A_k,则B_n\uparrow\in\mathcal{C},\bigcup_nB_n=\sum_{n=1}^\infty A_n: Bn=k=1nAkBnC,nBn=n=1An:
μ ( ∑ n = 1 ∞ A n ) = μ ( ⋃ n B n ) = ( 从 下 连 续 ) lim ⁡ n → ∞ μ ( B n ) = ( 有 限 可 加 ) lim ⁡ n → ∞ ∑ k = 1 n μ ( A k ) = ∑ n = 1 ∞ μ ( A n ) \mu(\sum_{n=1}^\infty A_n)=\mu(\bigcup_nB_n)=\textcolor{blue}{(从下连续)}\lim_{n\to\infty}\mu(B_n)=\textcolor{blue}{(有限可加)}\lim_{n\to\infty}\sum_{k=1}^n\mu(A_k)=\sum_{n=1}^\infty\mu(A_n) μ(n=1An)=μ(nBn)=()nlimμ(Bn)=()nlimk=1nμ(Ak)=n=1μ(An)
μ \mu μ σ \sigma σ可加性。#

1.4 外测度与测度的扩张

本节研究如何把一半环 C \mathcal{C} C上的一 σ \sigma σ可加非负集函数扩张成为 σ \sigma σ代数 σ ( C ) \sigma(\mathcal{C}) σ(C)上的测度
半环 ∅ ∈ C \emptyset \in \mathcal{C} C,对有限交封闭 ( A , B ∈ C ⇒ A ∩ B ∈ C ) (A,B\in \mathcal{C}\Rightarrow A\cap B\in \mathcal{C}) (A,BCABC),且 A \ B ∈ C Σ f A\backslash B \in \mathcal{C}_{\Sigma f} A\BCΣf:即 ∃ A i ∈ C , i = 1 , . . . , n , s . t . A \ B = ∑ i = 1 n A i \exist A_i\in \mathcal{C},i=1,...,n,s.t.A\backslash B = \sum_{i=1}^nA_i AiC,i=1,...,n,s.t.A\B=i=1nAi

定义:
C , D \mathcal{C,D} C,D两个集类,分别有 μ , ν \mu,\nu μ,ν两个集函数,且 C ⊂ D , ∀ A ∈ C \mathcal{C}\subset\mathcal{D},\forall A\in \mathcal{C} CD,AC μ ( A ) = ν ( A ) \mu(A)=\nu(A) μ(A)=ν(A),则称 ν \nu ν μ \mu μ D \mathcal{D} D上的扩张(延拓) μ \mu μ ν \nu ν C \mathcal{C} C上的限制,记为 μ = ν ∣ C \mu= \nu|_\mathcal{C} μ=νC

外测度

定义1.4.1(外测度)
P ( Ω ) \mathcal{P}(\Omega) P(Ω)表示 Ω \Omega Ω所有子集构成的集类,设 μ \mu μ P ( Ω ) \mathcal{P}(\Omega) P(Ω)上的一个非负集函数(满足 μ ( ∅ ) = 0 \mu(\empty)=0 μ()=0)。若 μ \mu μ单调性且满足 σ \sigma σ可加性
A n ⊂ Ω , n ⩾ 1 ⇒ μ ( ⋃ n A n ) ⩽ ∑ n μ ( A n ) A_n\subset \Omega,n\geqslant 1\Rightarrow \mu(\bigcup_n A_n)\leqslant\sum_{n}\mu(A_n) AnΩ,n1μ(nAn)nμ(An)
则称 μ \mu μ Ω \Omega Ω上一外测度

测度的扩张

命题1.4.3(由 μ \mu μ引出的外测度 μ ∗ \mu^* μ
C \mathcal{C} C Ω \Omega Ω上的一个集类, ∅ ∈ C . μ 为 C \varnothing\in\mathcal{C}.\mu 为\mathcal{C} C.μC上一半 σ \sigma σ可加非负集函数, μ ( ∅ ) = 0. 对 ∀ A ⊂ Ω , 若 ∃ { A n } ∈ C , s . t . A ⊂ ⋃ n A n , \mu(\varnothing)=0.对\forall A\subset\Omega,若\exist\{A_n\}\in\mathcal{C},s.t.A\subset\bigcup_nA_n, μ()=0.AΩ,{An}C,s.t.AnAn,
μ ∗ ( A ) = inf ⁡ { ∑ i = 1 ∞ μ ( A i ) ∣ A n ∈ C , A ⊂ ⋃ n = 1 ∞ A n } \mu^*(A) = \inf\left\{\sum_{i=1}^\infty\mu(A_i)\left|A_n\in\mathcal{C},A\subset\bigcup_{n=1}^\infty A_n\right.\right\} μ(A)=inf{i=1μ(Ai)AnC,An=1An}
约定 inf ⁡ ∅ = + ∞ . \inf\varnothing=+\infty. inf=+. μ ∗ \mu^* μ Ω \Omega Ω上的外测度,且 μ ∗ \mu^* μ限于 C \mathcal{C} C μ \mu μ一致 μ ∗ \mu^* μ为由 μ \mu μ引出的外测度

(即得到 ( P ( Ω ) , μ ∗ ) , P ( Ω ) (\mathcal{P}(\Omega),\mu^*),\mathcal{P}(\Omega) (P(Ω),μ)P(Ω)为一个 σ \sigma σ代数, μ ∗ \mu^* μ为一个外测度,扩张过度)

证:

  1. ∀ A ∈ C , μ ( A ) = μ ∗ ( A ) \forall A\in\mathcal{C},\mu(A) =\mu^*(A) AC,μ(A)=μ(A)
    ∵ A = A ∪ ∅   ∪ ∅   ∪ . . . ∴ μ ∗ ( A ) ⩽ μ ( A ) + 0 + . . . ∵ μ ∗ ( A ) = ∑ i = 1 ∞ μ ( A i ) ⩾ μ ( A ) ( 半 σ 可 加 性 ) ∴ μ ( A ) = μ ∗ ( A ) \begin{aligned} &\because A=A\cup\varnothing\ \cup\varnothing\ \cup...\\ &\therefore\mu^*(A)\leqslant\mu(A)+0+...\\ &\because\mu^*(A)=\sum_{i=1}^\infty\mu(A_i)\geqslant\mu(A)\footnotesize{\textcolor{blue}{(半\sigma可加性)}}\\ &\therefore\mu(A) = \mu^*(A) \end{aligned} A=A  ...μ(A)μ(A)+0+...μ(A)=i=1μ(Ai)μ(A)σμ(A)=μ(A)
  2. 单调性: A ⊂ B ⇒ μ ∗ ( A ) ⩽ μ ∗ ( B ) A\subset B\Rightarrow \mu^*(A)\leqslant\mu^*(B) ABμ(A)μ(B)
  3. μ ∗ ( ∅ ) = μ ( ∅ ) = 0 \mu^*(\varnothing) = \mu(\varnothing) = 0 μ()=μ()=0
  4. σ \sigma σ可加性:
    若 μ ∗ ( ∑ n = 1 ∞ A n ) < ∞ , 则 μ ∗ ( A n ) < ∞ , ∀ n ⇒ ∀ ϵ > 0 , ∃ B n k , k ⩾ 1 , s . t .   A n ⊂ ⋃ k = 1 ∞ B n k , 且 ∑ k = 1 ∞ μ ( B n k ) ⩽ μ ∗ ( A n ) + ϵ / 2 n ( inf ⁡ 性 质 ) ⇒ ⋃ n = 1 ∞ A n ⊂ ⋃ n = 1 ∞ ⋃ k = 1 ∞ B n k , B n k ∈ C ⇒ μ ∗ ( ⋃ n = 1 ∞ A n ) ⩽ ∑ n = 1 ∞ μ ∗ ( ⋃ k = 1 ∞ B n k ) ( 半 σ 可 加 性 ) ⩽ ∑ n = 1 ∞ ∑ k = 1 ∞ μ ( B n k ) ( μ ∗ 定 义 ) ⩽ ∑ n = 1 ∞ ( μ ∗ ( A n ) + ϵ / 2 n ) = ∑ n = 1 ∞ μ ∗ ( A n ) + ϵ    ( ∀ ϵ > 0 ) ∴ μ ∗ ( ⋃ n = 1 ∞ A n ) ⩽ ∑ n = 1 ∞ μ ∗ ( A n ) ⇒ ( 次 σ 可 加 性 ) \begin{aligned} & 若\mu^*(\sum_{n=1}^\infty A_n)<\infty,则\mu^*(A_n)<\infty,\forall n\\ & \Rightarrow \forall \epsilon >0,\exist B_{nk},k\geqslant 1,s.t.\ A_n\subset \bigcup^\infty_{k=1}B_{nk},且\sum^\infty_{k=1}\mu(B_{nk})\leqslant\mu^*(A_n)+\epsilon\footnotesize{\textcolor{blue}{/2^n(\inf性质)}}\\ & \Rightarrow\bigcup^\infty_{n=1}A_n\subset\bigcup^\infty_{n=1}\bigcup^\infty_{k=1}B_{nk},B_{nk}\in\mathcal{C}\\ & \Rightarrow\mu^*(\bigcup^\infty_{n=1}A_n)\leqslant\sum_{n=1}^\infty\mu^*(\bigcup^\infty_{k=1}B_{nk})\footnotesize{\textcolor{blue}{(半\sigma可加性)}}\\ &\qquad\qquad\qquad \leqslant\sum_{n=1}^\infty\sum^\infty_{k=1}\mu( B_{nk})\footnotesize{\textcolor{blue}{(\mu^*定义)}}\\ &\qquad\qquad\qquad \leqslant\sum_{n=1}^\infty\left(\mu^*(A_n) +\epsilon/2^n\right)\\ &\qquad\qquad\qquad =\sum_{n=1}^\infty \mu^*(A_n) +\epsilon \ \ (\forall \epsilon>0)\\ &\therefore\mu^*(\bigcup^\infty_{n=1}A_n)\leqslant\sum_{n=1}^\infty \mu^*(A_n) \Rightarrow(次\sigma可加性)\\ \end{aligned} μ(n=1An)<,μ(An)<,nϵ>0,Bnk,k1,s.t. Ank=1Bnk,k=1μ(Bnk)μ(An)+ϵ/2n(infn=1Ann=1k=1Bnk,BnkCμ(n=1An)n=1μ(k=1Bnk)σn=1k=1μ(Bnk)μn=1(μ(An)+ϵ/2n)=n=1μ(An)+ϵ  (ϵ>0)μ(n=1An)n=1μ(An)(σ)
    由2-4可知 μ ∗ \mu^* μ满足外测度定义,由1可知 μ ∗ \mu^* μ限于 C \mathcal{C} C μ \mu μ一致。#

( C , μ ) → 扩 张 ( P ( Ω ) , μ ∗ ) (\mathcal{C},\mu)\xrightarrow[扩张]{}(\mathcal{P}(\Omega),\mu^*) (C,μ) (P(Ω),μ)

μ \mu μ Ω \Omega Ω上的一个外测度。令
U = { A ⊂ Ω ∣ ∀ D ⊂ Ω , 有 μ ( D ) = μ ( A ∩ D ) + μ ( A c ∩ D ) } \mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\mu(D)=\mu(A\cap D)+\mu(A^c\cap D)\} U={AΩDΩ,μ(D)=μ(AD)+μ(AcD)}
下考察 U \mathcal{U} U的性质:
由外测度的半 σ \sigma σ可加性知, U \mathcal{U} U的性质等同于 U 1 \mathcal{U}_1 U1的性质
U 1 = { A ⊂ Ω ∣ ∀ D ⊂ Ω , 有 μ ( D ) ⩾ μ ( A ∩ D ) + μ ( A c ∩ D ) } \mathcal{U}_1=\{A\subset\Omega|\forall D\subset\Omega,有\mu(D)\geqslant\mu(A\cap D)+\mu(A^c\cap D)\} U1={AΩDΩ,μ(D)μ(AD)+μ(AcD)}

  1. A = Ω A=\Omega A=Ω时,有 μ ( D ) = μ ( Ω ∩ D ) + μ ( ∅ ∩ D ) , ∀ D ⊂ Ω 恒 成 立 ⇒ Ω ∈ U ; \mu(D)=\mu(\Omega\cap D)+\mu(\empty\cap D),\forall D\subset\Omega恒成立\Rightarrow\Omega\in\mathcal{U}; μ(D)=μ(ΩD)+μ(D),DΩΩU;
  2. A ∈ U 1 A\in\mathcal{U}_1 AU1时, ∀ D ⊂ Ω , 有 μ ( D ) ⩾ μ ( A c ∩ D ) + μ ( ( A c ) c ∩ D ) \forall D\subset\Omega,有\mu(D)\geqslant\mu(A^c\cap D)+\mu((A^c)^c\cap D) DΩ,μ(D)μ(AcD)+μ((Ac)cD),即 A c ∈ U 1 ; A^c\in\mathcal{U}_1; AcU1;
  3. A , B ∈ U 1 A,B\in\mathcal{U}_1 A,BU1,则 ∀ D ⊂ Ω , μ ( D ) ⩾ μ ( A ∩ D ) + μ ( A c ∩ D ) \forall D\subset\Omega,\mu(D)\geqslant\mu(A\cap D)+\mu(A^c\cap D) DΩ,μ(D)μ(AD)+μ(AcD)
      ⩾ μ ( A ∩ D ) + μ ( B ∩ A c ∩ D ) + μ ( B c ∩ A c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ \geqslant\mu(A\cap D)+\mu(B\cap A^c\cap D)+\mu(B^c\cap A^c\cap D)  μ(AD)+μ(BAcD)+μ(BcAcD)
      ⩾ μ ( ( A ∩ D ) ∪ ( B ∩ A c ∩ D ) ) + μ ( ( A ∪ B ) c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ \geqslant\mu((A\cap D)\cup (B\cap A^c\cap D))+\mu((A\cup B)^c\cap D)  μ((AD)(BAcD))+μ((AB)cD)
      = μ ( D ∩ ( A ∪ ( B ∩ A c ) ) + μ ( ( A ∪ B ) c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ =\mu(D\cap(A\cup(B \cap A^c))+\mu((A\cup B)^c\cap D)  =μ(D(A(BAc))+μ((AB)cD)
      = μ ( D ∩ ( A ∪ B ) ) + μ ( ( A ∪ B ) c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ =\mu(D\cap(A\cup B))+\mu((A\cup B)^c\cap D)  =μ(D(AB))+μ((AB)cD)
    ⇒ A ∪ B ∈ U 1 \quad \quad \quad \quad \Rightarrow A\cup B\in \mathcal{U}_1 ABU1
    由1-3可知 U 1 ( U ) \mathcal{U}_1(\mathcal{U}) U1(U)为一代数.
  4. A n ∈ U 1 , n ⩾ 1 , 且 A n ∩ A m = ∅ , n ≠ m : A_n\in\mathcal{U}_1,n\geqslant1,且A_n\cap A_m=\empty,n\not=m: AnU1,n1,AnAm=,n=m:(若对于可列不交并封闭,则对可列并也封闭)
    μ ( D ) ⩾ μ ( A 1 ∩ D ) + μ ( A 1 c ∩ D ) ⩾ μ ( A 1 ∩ D ) + μ ( A 2 ∩ ( A 1 c ∩ D ) ) + μ ( A 2 c ∩ ( A 1 c ∩ D ) ) = μ ( A 1 ∩ D ) + μ ( A 2 ∩ D ) + μ ( ( A 1 ∪ A 2 ) c ∩ D ) . . . ⩾ ∑ k = 1 n μ ( A k ∩ D ) + μ ( ( ∑ k = 1 n A k ) c ∩ D ) 由 ( ∑ k = 1 ∞ A k ) c ⊂ ( ∑ k = 1 n A k ) c , 及 μ 单 调 性 知 μ ( ( ∑ k = 1 n A k ) c ∩ D ) ⩾ μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) ⩾ ∑ k = 1 n μ ( A k ∩ D ) + μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) 令 n → ∞ ⩾ ∑ k = 1 ∞ μ ( A k ∩ D ) + μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) μ 的 次 σ 可 加 性 ⩾ μ ( ( ∑ k ∞ A k ) ∩ D ) + μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) , ∀ D ⊂ Ω ⇒ ∑ k ∞ A k ∈ U 1 \begin{aligned} \mu(D)&\geqslant\mu(A_1\cap D)+\mu(A_1^c\cap D)\\ &\geqslant\mu(A_1\cap D)+\mu(A_2\cap(A_1^c\cap D))+\mu(A_2^c\cap(A_1^c\cap D))\\ &=\mu(A_1\cap D)+\mu(A_2\cap D)+\mu( (A_1\cup A_2)^c\cap D)\\ &...\\ &\geqslant\sum_{k=1}^n\mu(A_k\cap D)+\mu((\sum_{k=1}^nA_k)^c\cap D)\\ &\footnotesize{\textcolor{blue}{由(\sum_{k=1}^\infty A_k)^c\subset(\sum_{k=1}^n A_k)^c,及\mu单调性知\mu((\sum_{k=1}^nA_k)^c\cap D)\geqslant\mu((\sum_{k=1}^\infty A_k)^c\cap D)}}\\ &\geqslant\sum_{k=1}^n\mu(A_k\cap D)+\mu((\sum_{k=1}^\infty A_k)^c\cap D)\\ &\footnotesize{\textcolor{blue}{令n\to\infty}}\\ &\geqslant\sum_{k=1}^\infty\mu(A_k\cap D)+\mu((\sum_{k=1}^\infty A_k)^c\cap D)\\ &\footnotesize{\textcolor{blue}{\mu的次\sigma可加性}}\\ &\geqslant\mu((\sum_k^\infty A_k)\cap D)+\mu((\sum_{k=1}^\infty A_k)^c\cap D),\quad \forall D\subset \Omega\\ &\Rightarrow \sum_k^\infty A_k\in\mathcal{U}_1 \end{aligned} μ(D)μ(A1D)+μ(A1cD)μ(A1D)+μ(A2(A1cD))+μ(A2c(A1cD))=μ(A1D)+μ(A2D)+μ((A1A2)cD)...k=1nμ(AkD)+μ((k=1nAk)cD)(k=1Ak)c(k=1nAk)c,μμ((k=1nAk)cD)μ((k=1Ak)cD)k=1nμ(AkD)+μ((k=1Ak)cD)nk=1μ(AkD)+μ((k=1Ak)cD)μσμ((kAk)D)+μ((k=1Ak)cD),DΩkAkU1
    特别的,取 D = ∑ k ∞ A k ⊂ Ω D=\sum_k^\infty A_k\subset\Omega D=kAkΩ,有 μ ( ∑ k ∞ A k ) ⩾ ∑ k ∞ μ ( A k ) ⩾ μ ( ∑ k ∞ A k ) \mu(\sum_k^\infty A_k)\geqslant\sum_k^\infty \mu(A_k)\geqslant\mu(\sum_k^\infty A_k) μ(kAk)kμ(Ak)μ(kAk),即
    μ ( ∑ k ∞ A k ) = ∑ k ∞ μ ( A k ) \mu(\sum_k^\infty A_k)=\sum_k^\infty \mu(A_k) μ(kAk)=kμ(Ak)
    由4可知, μ \mu μ具有 σ \sigma σ可加性。

由1-4可知, U 1 ( U ) \mathcal{U}_1(\mathcal{U}) U1(U)为一 σ \sigma σ代数, μ \mu μ限于 U 1 ( U ) \mathcal{U}_1(\mathcal{U}) U1(U)为一测度。

整理得定理如下:
定理1.4.2
μ \mu μ Ω \Omega Ω上的一个外测度。令
U = { A ⊂ Ω ∣ ∀ D ⊂ Ω , 有 μ ( D ) = μ ( A ∩ D ) + μ ( A c ∩ D ) } \mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\mu(D)=\mu(A\cap D)+\mu(A^c\cap D)\} U={AΩDΩ,μ(D)=μ(AD)+μ(AcD)}
U \mathcal{U} U Ω \Omega Ω上的一 σ \sigma σ代数, μ \mu μ限于 U \mathcal{U} U为一测度。称 U \mathcal{U} U中的元素为 μ \mu μ可测集。

引理1.4.5
C \mathcal{C} C Ω \Omega Ω上的一集类,且 ∅ ∈ C . \varnothing\in\mathcal{C}. C. μ \mu μ C \mathcal{C} C上的一半 σ \sigma σ可加非负集函数,且 μ ( ∅ ) = 0 , μ ∗ \mu(\varnothing)=0,\mu^* μ()=0,μ μ \mu μ引出的外测度,则对于 ∀ A ∈ Ω \forall A\in \Omega AΩ
A \qquad \qquad A A μ ∗ \mu^* μ可测集    ⟺    ∀ C ∈ C \iff \forall C\in\mathcal{C} CC,有 μ ( C ) ⩾ μ ∗ ( C ∩ A ) + μ ∗ ( C ∩ A c ) \mu(C)\geqslant\mu^*(C\cap A)+\mu^*(C\cap A^c) μ(C)μ(CA)+μ(CAc)


U = { A ⊂ Ω ∣ ∀ D ⊂ Ω , 有 μ ∗ ( D ) = μ ∗ ( A ∩ D ) + μ ∗ ( A c ∩ D ) } ⇕ U 1 = { A ⊂ Ω ∣ ∀ D ⊂ Ω , 有 μ ∗ ( D ) ⩾ μ ∗ ( A ∩ D ) + μ ∗ ( A c ∩ D ) } ⇕ U 2 = { A ⊂ Ω ∣ ∀ C ∈ C , 有 μ ( C ) ( = μ ∗ ( C ) ) ⩾ μ ∗ ( A ∩ C ) + μ ∗ ( A c ∩ C ) } \begin{aligned} &\mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\mu^*(D)=\mu^*(A\cap D)+\mu^*(A^c\cap D)\}\\ &\Updownarrow\\ &\mathcal{U}_1=\{A\subset\Omega|\forall D\subset\Omega,有\mu^*(D)\geqslant\mu^*(A\cap D)+\mu^*(A^c\cap D)\}\\ &\Updownarrow\\ &\mathcal{U}_2=\{A\subset\Omega|\forall C\in\mathcal{C},有\mu(C)(=\mu^*(C))\geqslant\mu^*(A\cap C)+\mu^*(A^c\cap C)\} \end{aligned} U={AΩDΩ,μ(D)=μ(AD)+μ(AcD)}U1={AΩDΩ,μ(D)μ(AD)+μ(AcD)}U2={AΩCC,μ(C)(=μ(C))μ(AC)+μ(AcC)}

证:
⇒ \Rightarrow 必要性:显然
⇐ \Leftarrow 充分性:
A ∈ U 2 A\in\mathcal{U}_2 AU2,取 D ⊂ Ω D\subset\Omega DΩ
μ ∗ ( D ) = ∞ \mu^*(D)=\infty μ(D)=,则 μ ∗ ( D ) ⩾ μ ∗ ( A ∩ D ) + μ ∗ ( A c ∩ D ) \mu^*(D)\geqslant\mu^*(A\cap D)+\mu^*(A^c\cap D) μ(D)μ(AD)+μ(AcD)恒成立;
μ ∗ ( D ) < ∞ \mu^*(D)<\infty μ(D)<,则 ∀ ϵ > 0 , ∃ A n ∈ C , n ⩾ 1 , s . t .    D ⊂ ⋃ n = 1 ∞ A n \forall \epsilon>0,\exist{A_n}\in\mathcal{C},n\geqslant1,s.t.\ \ D\subset\bigcup_{n=1}^\infty A_n ϵ>0,AnC,n1,s.t.  Dn=1An,且
μ ∗ ( D ) + ϵ ⩾ ∑ n = 1 ∞ μ ∗ ( A n ) ( 由 inf ⁡ / μ ∗ 定 义 ) ⩾ ∑ n = 1 ∞ ( μ ∗ ( A n ∩ A ) + μ ∗ ( A n ∩ A c ) ) ( U 2 性 质 ) ⩾ μ ∗ ( ⋃ n = 1 ∞ A n ∩ A ) + μ ∗ ( ⋃ n = 1 ∞ A n ∩ A c ) ( 外 测 度 的 次 σ 可 加 性 ) ⩾ μ ∗ ( D ∩ A ) + μ ∗ ( D ∩ A c ) ( 单 调 性 ) \begin{aligned} \mu^*(D)+\epsilon&\geqslant\sum_{n=1}^\infty\mu^*(A_n)\footnotesize{\textcolor{blue}{(由\inf/\mu^*定义)}}\\ &\geqslant\sum_{n=1}^\infty(\mu^*(A_n\cap A)+\mu^*(A_n\cap A^c))\footnotesize{\textcolor{blue}{(\mathcal{U}_2性质)}}\\ &\geqslant\mu^*(\bigcup_{n=1}^\infty A_n\cap A)+\mu^*(\bigcup_{n=1}^\infty A_n\cap A^c)\footnotesize{\textcolor{blue}{(外测度的次\sigma可加性)}}\\ &\geqslant\mu^*(D\cap A)+\mu^*(D\cap A^c) \footnotesize{\textcolor{blue}{(单调性)}} \end{aligned} μ(D)+ϵn=1μ(An)inf/μn=1(μ(AnA)+μ(AnAc))U2μ(n=1AnA)+μ(n=1AnAc)σμ(DA)+μ(DAc)
ϵ \epsilon ϵ任意性知, μ ∗ ( D ) ⩾ μ ∗ ( A ∩ D ) + μ ∗ ( A c ∩ D ) \mu^*(D)\geqslant\mu^*(A\cap D)+\mu^*(A^c\cap D) μ(D)μ(AD)+μ(AcD)成立。即 A ∈ U 1 , A A\in\mathcal{U}_1,A AU1,A μ ∗ \mu^* μ可测集。

可知在 U \mathcal{U} U上考虑 μ ∗ \mu^* μ等价于在 C \mathcal{C} C上考虑 μ ;     ( C , μ ) → 扩 张 ( U , μ ∗ ∣ U ) → 扩 张 ( P ( Ω ) , μ ∗ ) \mu ;\ \ \ (\mathcal{C},\mu)\xrightarrow[扩张]{}(\mathcal{U},\mu^*|_\mathcal{U})\xrightarrow[扩张]{}(\mathcal{P}(\Omega),\mu^*) μ;   (C,μ) (U,μU) (P(Ω),μ)

命题1.4.4
μ \mu μ为半环 C \mathcal{C} C上的一非负集函数( μ ( ∅ ) = 0 \mu(\varnothing)=0 μ()=0),则 μ \mu μ是证明 σ \sigma σ可加的    ⟺    μ \iff\mu μ为有限可加的 + 半 σ \sigma σ可加的。
证:

定理
半环 C \mathcal{C} C μ \mu μ C \mathcal{C} C上一 σ \sigma σ可加非负集函数,则 μ \mu μ可以扩张成 σ ( C ) \sigma(\mathcal{C}) σ(C)上测度,
μ ∗ ( A ) = inf ⁡ { ∑ i = 1 ∞ μ ( A i ) ∣ A n ∈ C , A ⊂ ⋃ n = 1 ∞ A n } \mu^*(A) = \inf\left\{\sum_{i=1}^\infty\mu(A_i)\left|A_n\in\mathcal{C},A\subset\bigcup_{n=1}^\infty A_n\right.\right\} μ(A)=inf{i=1μ(Ai)AnC,An=1An}
对应 μ ∗ \mu^* μ可测集 U \mathcal{U} U σ \sigma σ代数,测度为 μ ∗ ∣ U \mu^*|_\mathcal{U} μU

引理1.4.6
C \mathcal{C} C Ω \Omega Ω上的一 π \pi π类, μ 1 , μ 2 \mu_1,\mu_2 μ1,μ2 σ ( C ) \sigma(\mathcal{C}) σ(C)上的两个有限测度 ( μ ( Ω ) < ∞ ) \footnotesize{\textcolor{blue}{(\mu(\Omega)<\infty)}} μ(Ω)<。若 Ω ∈ C \Omega\in\mathcal{C} ΩC,且 μ 1 ∣ C = μ 2 ∣ C \mu_1|_\mathcal{C}=\mu_2|_\mathcal{C} μ1C=μ2C,则 ( σ ( C ) , μ 1 ) = ( σ ( C ) , μ 2 ) (\sigma(\mathcal{C}),\mu_1)=(\sigma(\mathcal{C}),\mu_2) (σ(C),μ1)=(σ(C),μ2)
证:
∀ A ∈ C \forall A\in\mathcal{C} AC,有 μ 1 ( A ) = μ 2 ( A ) : \mu_1(A)=\mu_2(A): μ1(A)=μ2(A)
G = { A ∈ σ ( C ) ∣ μ 1 ( A ) = μ 2 ( A ) } \mathcal{G}=\{A\in\sigma(\mathcal{C})|\mu_1(A)=\mu_2(A)\} G={Aσ(C)μ1(A)=μ2(A)} G \mathcal{G} G λ \lambda λ类,则 σ ( C ) ⊆ G ⇒ σ ( C ) = G . \sigma(\mathcal{C})\subseteq\mathcal{G}\Rightarrow\sigma(\mathcal{C})=\mathcal{G}. σ(C)Gσ(C)=G.
可证 G \mathcal{G} G λ \lambda λ类:
Ω ∈ G \Omega\in\mathcal{G} ΩG
A , B ∈ G , B ⊂ A : μ 1 ( A \ B ) = μ 1 ( A ) − μ 1 ( B ) = μ 2 ( A ) − μ 2 ( B ) = μ 2 ( A \ B ) ⇒ A \ B ∈ G A,B\in\mathcal{G},B\subset A:\mu_1(A\backslash B)=\mu_1(A)-\mu_1(B)=\mu_2(A)-\mu_2(B)=\mu_2(A\backslash B)\Rightarrow A\backslash B\in\mathcal{G} A,BG,BA:μ1(A\B)=μ1(A)μ1(B)=μ2(A)μ2(B)=μ2(A\B)A\BG
③取 A n ∈ G , A n ↑ , 则 μ 1 ( A n ) = μ 2 ( A n ) : A_n\in\mathcal{G},A_n\uparrow ,则\mu_1(A_n)=\mu_2(A_n): AnGAn,μ1(An)=μ2(An):
μ 1 ( ⋃ n A n ) = lim ⁡ n → ∞ μ 1 ( A n ) = lim ⁡ n → ∞ μ 2 ( A n ) = μ 2 ( ⋃ n A n ) \mu_1(\bigcup_n A_n)=\lim_{n\to\infty}\mu_1(A_n)=\lim_{n\to\infty}\mu_2(A_n)=\mu_2(\bigcup_n A_n) μ1(nAn)=limnμ1(An)=limnμ2(An)=μ2(nAn)
⇒ ⋃ n A n ∈ G \Rightarrow \bigcup_n A_n\in\mathcal{G}\quad nAnG #

定理1.4.7
半环 C \mathcal{C} C μ \mu μ C \mathcal{C} C上一 σ \sigma σ可加非负集函数,则 μ \mu μ可以扩张成 σ ( C ) \sigma(\mathcal{C}) σ(C)上测度。若进一步 μ \mu μ C \mathcal{C} C上为 σ \sigma σ有限,且 Ω ∈ C σ \Omega\in\mathcal{C}_\sigma ΩCσ,则这一扩张唯一,且扩张所得的测度在 σ ( C ) \sigma(\mathcal{C}) σ(C)上也为 σ \sigma σ有限。

定义1.4.9
( Ω , C ) (\Omega,\mathcal{C}) (Ω,C)半环, σ \sigma σ可加测度 μ \mu μ
( Ω , F , μ ) (\Omega,\mathcal{F},\mu) (Ω,F,μ)为一测度空间。令
N = { N ⊂ Ω ∣ ∃ A ∈ F , μ ( A ) = 0 ,   s . t .   N ⊂ A } \mathcal{N} = \{N\subset\Omega|\exist A\in\mathcal{F},\mu(A)=0,\ s.t. \ N\subset A\} N={NΩAF,μ(A)=0, s.t. NA}
N \mathcal{N} N为零测集。对 ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) (Ω,F,μ)测度空间:定义 F ˉ = F ∪ N \bar\mathcal{F}=\mathcal{F}\cup \mathcal{N} Fˉ=FN,则 F ˉ \bar\mathcal{F} Fˉ σ \sigma σ代数。

Lesson 6:Chp2 可测映射

回顾总结

取半环 ( Ω , C ) (\Omega,\mathcal{C}) (Ω,C) σ \sigma σ可加的测度 μ ⇒ \mu\Rightarrow μ 测度空间 ( Ω , σ ( C ) , ν ) (\Omega,\sigma(\mathcal{C}),\nu) (Ω,σ(C),ν)

①: ∀ A ⊂ Ω , μ ∗ ( A ) = inf ⁡ { ∑ i = 1 ∞ μ ( A i ) ∣ A n ∈ C , A ⊂ ⋃ n = 1 ∞ A n } \forall A\subset\Omega,\mu^*(A) = \inf\left\{\sum_{i=1}^\infty\mu(A_i)\left|A_n\in\mathcal{C},A\subset\bigcup_{n=1}^\infty A_n\right.\right\} AΩ,μ(A)=inf{i=1μ(Ai)AnC,An=1An}
得到 P ( Ω ) \mathcal{P}(\Omega) P(Ω)+外测度(次 σ \sigma σ可加) ( P ( Ω ) , μ ∗ ) (\mathcal{P}(\Omega),\mu^*) (P(Ω),μ)

②:由分析可知,取
  U ˉ = { A ⊂ Ω ∣ ∀ D ⊂ Ω , 有 μ ˉ ( D ) = μ ˉ ( A ∩ D ) + μ ˉ ( A c ∩ D ) } \ \bar\mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\bar\mu(D)=\bar\mu(A\cap D)+\bar\mu(A^c\cap D)\}  Uˉ={AΩDΩ,μˉ(D)=μˉ(AD)+μˉ(AcD)}(其中 μ ˉ \bar\mu μˉ为任意外测度)
U ˉ \bar\mathcal{U} Uˉ σ \sigma σ代数,且 μ ˉ ∣ U ˉ \bar\mu|_{\bar\mathcal{U}} μˉUˉ为其上一个测度

③:当外测度 μ ˉ \bar\mu μˉ μ \mu μ引出的外测度 μ ∗ \mu^* μ时,取
  U ∗ = { A ⊂ Ω ∣ ∀ D ∈ C , 有 μ ∗ ( D ) = μ ∗ ( A ∩ D ) + μ ∗ ( A c ∩ D ) } \ \mathcal{U}^*=\{A\subset\Omega|\forall D\in\mathcal{C},有\mu^*(D)=\mu^*(A\cap D)+\mu^*(A^c\cap D)\}  U={AΩDC,μ(D)=μ(AD)+μ(AcD)}
U ∗ \mathcal{U}^* U σ \sigma σ代数,且 μ ∗ ∣ U ∗ \mu^*|_{\mathcal{U}^*} μU为其上一个测度: ( U ∗ , μ ∗ ∣ U ∗ ) (\mathcal{U^*},\mu^*|_\mathcal{U^*}) (U,μU)
只需说明 C ⊂ U ∗ , ν = μ ∗ ∣ σ ( C ) \mathcal{C}\subset\mathcal{U}^*,\nu=\mu^*|_{\sigma(\mathcal{C})} CU,ν=μσ(C)

④:考察唯一性
由单调类定理可证,即引理1.4.6

2.1 定义及基本性质

相关定义

可测空间映射: ( Ω , F ) ↦ f ( E , E ) (\Omega,\mathcal{F})\xmapsto{f}(E,\mathcal{E}) (Ω,F)f (E,E)
B ∈ E , f − 1 ( B ) = { ω ∈ Ω ∣ f ( ω ) ∈ B } B\in\mathcal{E},f^{-1}(B) = \{\omega\in\Omega|f(\omega)\in B\} BE,f1(B)={ωΩf(ω)B} Ω \Omega Ω上的集合 E \mathcal{E} E中集合 B B B的原象)
f − 1 ( E ) = { f − 1 ( B ) ∣ B ∈ E } \qquad \quad f^{-1}(\mathcal{E}) = \{f^{-1}(B)|B\in\mathcal{E}\} f1(E)={f1(B)BE} Ω \Omega Ω上的集类
性质:

  1. f − 1 ( ∅ ) = ∅ f^{-1}(\varnothing)=\varnothing f1()= ?
  2. f − 1 ( E ) = Ω f^{-1}(E)=\Omega f1(E)=Ω ?
  3. f − 1 ( B c ) = ( f − 1 ( B ) ) c f^{-1}(B^c)=(f^{-1}(B))^c f1(Bc)=(f1(B))c
  4. f − 1 ( ⋃ i ∈ I B i ) = ⋃ i ∈ I f − 1 ( B i ) f^{-1}(\bigcup_{i\in I}B_i)=\bigcup_{i\in I}f^{-1}(B_i) f1(iIBi)=iIf1(Bi)
  5. f − 1 ( ⋂ i ∈ I B i ) = ⋂ i ∈ I f − 1 ( B i ) f^{-1}(\bigcap_{i\in I}B_i)=\bigcap_{i\in I}f^{-1}(B_i) f1(iIBi)=iIf1(Bi)
    ⇒ f − 1 ( E ) 是 Ω 上 σ 代 数 \color{blue}\Rightarrow f^{-1}(\mathcal{E})是\Omega上\sigma代数 f1(E)Ωσ
  6. f − 1 ( A \ B ) = f − 1 ( A ) \ f − 1 ( B ) f^{-1}(A\backslash B)=f^{-1}(A)\backslash f^{-1}(B) f1(A\B)=f1(A)\f1(B)

定义2.1.1 为何这样定义?
( Ω , F ) , ( E , E ) (\Omega,\mathcal{F}),(E,\mathcal{E}) (Ω,F),(E,E)为两个可测空间, f f f Ω \Omega Ω E E E中的映射。若对一切 A ∈ Ω A\in\Omega AΩ,有 f − 1 ( A ) ∈ F f^{-1}(A)\in\mathcal{F} f1(A)F,则称 f f f F \mathcal{F} F可测映射
即: f f f F \mathcal{F} F可测映射    ⟺    f − 1 ( E ) ⊂ F \iff f^{-1}(\mathcal{E})\subset\mathcal{F} f1(E)F

可测映射刻画:
取集类 C \mathcal{C} C ( Ω , F ) ↦ f ( E , E = σ E ( C ) ) (\Omega,\mathcal{F})\xmapsto{f}(E,\mathcal{E}=\sigma_E(\mathcal{C})) (Ω,F)f (E,E=σE(C))
f 为 F 可 测 映 射    ⟺    f − 1 ( σ E ( C ) ) ⊂ F    ⟺    f − 1 ( C ) ⊂ F \begin{aligned} f为\mathcal{F}可测映射&\iff f^{-1}(\sigma_E(\mathcal{C}))\subset\mathcal{F}\\ &\iff f^{-1}(\mathcal{C})\subset\mathcal{F} \end{aligned} fFf1(σE(C))Ff1(C)F
⇒ f − 1 ( σ E ( C ) ) = σ Ω ( f − 1 ( C ) ) \Rightarrow f^{-1}(\sigma_E(\mathcal{C}))=\sigma_\Omega(f^{-1}(\mathcal{C})) f1(σE(C))=σΩ(f1(C))

Lesson 7:Chp2 可测映射

下研究可测函数的构造

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值