测度论笔记(更新ing)
Lesson 1:Chp1 集合与测度
1.1集合运算与集类
1.集合
符号
Ω
\Omega
Ω:一个非空集合(空间)
ω
\omega
ω:
Ω
\Omega
Ω 中元素点
A:
Ω
\Omega
Ω 中元素的集合(子集)
Bc :余集
⇒
Ω
\
B
\Rightarrow\Omega \backslash B
⇒Ω\B
包含:
A
⊂
B
:
ω
∈
A
⇒
ω
∈
B
A\subset B:\omega \in A \Rightarrow \omega \in B
A⊂B:ω∈A⇒ω∈B
集合相等:
A
=
B
:
A
⊂
B
,
B
⊂
A
A = B :A\subset B, B \subset A
A=B:A⊂B,B⊂A
集合运算
并:
A
∪
B
:
ω
∈
A
或
ω
∈
B
A\cup B:\omega \in A\ 或\ \omega\in B
A∪B:ω∈A 或 ω∈B
交:
A
∩
B
:
ω
∈
A
且
ω
∈
B
A\cap B:\omega \in A\ 且\ \omega\in B
A∩B:ω∈A 且 ω∈B
(
A
∩
B
常
记
为
A
B
)
\quad (A\cap B常记为AB)
(A∩B常记为AB)
A
+
B
:
A
∩
B
=
∅
时
,
A
∩
B
记
为
A
+
B
\quad \ \ \ A+B:A\cap B = \emptyset \ 时,A\cap B记为A+B
A+B:A∩B=∅ 时,A∩B记为A+B
差:
A
\
B
:
ω
∈
A
且
ω
∉
B
A\backslash B:\omega \in A\ 且\ \omega\notin B
A\B:ω∈A 且 ω∈/B
(
A
\
B
=
A
∩
B
c
)
\quad (A\backslash B = A\cap B^c)
(A\B=A∩Bc)
A
−
B
:
B
⊂
A
时
,
A
\
B
记
为
A
−
B
\quad \ \ \ A-B:B\subset A \ 时,A\backslash B记为A-B
A−B:B⊂A 时,A\B记为A−B
对称差: A △ B : ( A \ B ) ∪ ( B \ A ) A\bigtriangleup B:(A\backslash B)\cup (B\backslash A) A△B:(A\B)∪(B\A)
2.集类: { A i , i ∈ I } \{A_i ,i\in I\} {Ai,i∈I}
相关性质
(可列个集合)
⋃
i
∈
I
A
i
=
{
ω
∣
∃
i
∈
I
,
s
.
t
.
ω
∈
A
i
}
\bigcup_{i\in I} A_i = \{\omega|\ \exist i \in I,s.t.\omega \in A_i \}
⋃i∈IAi={ω∣ ∃i∈I,s.t.ω∈Ai}
⋂
i
∈
I
A
i
=
{
ω
∣
∀
i
∈
I
,
ω
∈
A
i
}
\bigcap_{i\in I} A_i = \{\omega|\ \forall i \in I,\omega \in A_i \}
⋂i∈IAi={ω∣ ∀i∈I,ω∈Ai}
(
⋃
i
∈
I
A
i
)
∩
B
=
⋃
i
∈
I
(
A
i
∩
B
)
(\bigcup_{i\in I} A_i )\cap B = \bigcup_{i\in I} (A_i \cap B)
(⋃i∈IAi)∩B=⋃i∈I(Ai∩B)
(满足相应交换律、结合律、de Morgan公式)
上下限集
lim n → ∞ ‾ A n = lim sup n → ∞ A n = ⋂ n = 1 ∞ ⋃ k = n ∞ A k = { ω ∣ ∀ n , ∃ k ≥ n , ω ∈ A k } = { ω ∣ ω 属 于 { A n } 中 无 穷 多 个 } \overline{\lim_{n\to\infty}}A_n= \limsup_{n\to\infty}A_n =\bigcap_{n = 1}^\infty \bigcup_{k = n}^\infty A_k\\ =\{\omega|\forall n,\exist k\ge n,\omega\in A_k\}\\ =\{\omega|\omega 属于\{A_n\}中无穷多个\} n→∞limAn=n→∞limsupAn=n=1⋂∞k=n⋃∞Ak={ω∣∀n,∃k≥n,ω∈Ak}={ω∣ω属于{An}中无穷多个}
lim
‾
n
→
∞
A
n
=
lim inf
n
→
∞
A
n
=
⋃
n
=
1
∞
⋂
k
=
n
∞
A
k
=
{
ω
∣
∃
n
,
∀
k
≥
n
,
ω
∈
A
k
}
=
{
ω
∣
ω
不
属
于
{
A
n
}
中
有
限
多
个
}
\underline{\lim}_{n\to \infty}A_n=\liminf_{n\to\infty}A_n =\bigcup_{n = 1}^\infty \bigcap_{k = n}^\infty A_k\\ =\{\omega|\exist n,\forall k\ge n,\omega\in A_k\}\\ =\{\omega|\omega 不属于\{A_n\}中有限多个\}
limn→∞An=n→∞liminfAn=n=1⋃∞k=n⋂∞Ak={ω∣∃n,∀k≥n,ω∈Ak}={ω∣ω不属于{An}中有限多个}
关系:
lim
‾
n
→
∞
A
n
⊃
lim
‾
n
→
∞
A
n
\overline{\lim}_{n\to\infty}A_n\supset\underline{\lim}_{n\to \infty}A_n
limn→∞An⊃limn→∞An
(为理解文字描述:
如
ω
∈
A
1
,
A
3
,
A
5
,
.
.
.
,
则
ω
∈
lim
‾
n
→
∞
A
n
,
ω
∉
lim
‾
n
→
∞
A
n
如\omega\in A_1,A_3,A_5,...,则\omega\in\overline{\lim}_{n\to\infty}A_n,\omega\notin\underline{\lim}_{n\to \infty}A_n
如ω∈A1,A3,A5,...,则ω∈limn→∞An,ω∈/limn→∞An)
例:
A
n
=
{
B
,
n为偶数
C
,
n为奇数
,
则
lim
‾
n
→
∞
A
n
=
B
∪
C
,
lim
‾
n
→
∞
A
n
=
B
∩
C
A_n= \begin{cases} B, &\text{n为偶数 } \\ C, &\text{n为奇数 } \end{cases},则\overline{\lim}_{n\to\infty}A_n = B\cup C,\underline{\lim}_{n\to \infty}A_n = B\cap C
An={B,C,n为偶数 n为奇数 ,则limn→∞An=B∪C,limn→∞An=B∩C
(看到一种类比,上限集类比于最小公倍数,下限集类比于最大公约数,感觉意会了,有更好的理解望大家不吝赐教)
极限: 若 lim ‾ n → ∞ A n = lim ‾ n → ∞ A n \overline{\lim}_{n\to\infty}A_n=\underline{\lim}_{n\to \infty}A_n limn→∞An=limn→∞An,则称极限集存在,记为 lim n → ∞ A n \lim_{n\to\infty}A_n limn→∞An
Lesson 2: Chp1
构造集类
设
C
\mathcal{C}
C 为一非空集类
有限交封闭: 若
A
,
B
∈
C
⇒
A
∩
B
∈
C
A,B\in \mathcal{C}\Rightarrow A\cap B \in \mathcal{C}
A,B∈C⇒A∩B∈C,则称
C
\mathcal{C}
C 对有限交封闭(从而
∩
i
=
1
n
A
i
∈
C
\cap_{i=1}^n A_i \in \mathcal{C}
∩i=1nAi∈C)
C
∩
f
:
\mathcal{C}_{\cap f}:
C∩f:用有限交运算封闭
C
\mathcal{C}
C 所得的集类
C
∩
f
=
{
A
∣
A
=
⋂
i
=
1
n
A
i
,
A
i
∈
C
,
i
=
1
,
.
.
.
,
n
,
n
≥
1
}
\mathcal{C}_{\cap f} = \left\{A\left|A= \bigcap_{i=1}^n A_i,A_i\in\mathcal{C},i=1,...,n,n\ge1\right.\right\}
C∩f={A∣∣∣∣∣A=i=1⋂nAi,Ai∈C,i=1,...,n,n≥1}
可列交封闭: 若
A
n
∈
C
,
n
≥
1
⇒
⋂
n
∞
A
n
∈
C
A_n\in \mathcal{C},n\ge 1\Rightarrow \bigcap_n^\infty A_n\in \mathcal{C}
An∈C,n≥1⇒⋂n∞An∈C,则称
C
\mathcal{C}
C 对可列交封闭
(类似可定义有限并封闭、可列并封闭)
C
δ
:
\mathcal{C}_\delta:
Cδ:用可列交运算封闭
C
\mathcal{C}
C 所得的集类
C
∪
f
:
\mathcal{C}_{\cup f}:
C∪f:有限并运算封闭…
C
σ
:
\mathcal{C}_\sigma:
Cσ:可列并运算封闭…
C
Σ
f
:
\mathcal{C}_{\Sigma f}:
CΣf:有限不交并…
C
Σ
σ
:
\mathcal{C}_{\Sigma \sigma}:
CΣσ:可列不交并…
联系
命题1.1.7 (由集合的交和并的分配律可得):
- C ∪ f , ∩ f = C ∩ f , ∪ f \mathcal{C}_{\cup f,\cap f}=\mathcal{C}_{\cap f,\cup f} C∪f,∩f=C∩f,∪f
- 若 C \mathcal{C} C对有限交封闭,则 C ∪ f , C σ , C Σ f , C Σ σ \mathcal{C}_{\cup f},\mathcal{C}_\sigma, \mathcal{C}_{\Sigma f},\mathcal{C}_{\Sigma \sigma} C∪f,Cσ,CΣf,CΣσ对有限交封闭
- 若 C \mathcal{C} C对有限并封闭,则 C ∩ f , C δ \mathcal{C}_{\cap f},\mathcal{C}_{\delta} C∩f,Cδ
集类分类
下用集合运算的封闭性划分不同类型的集类
定义1.1.8
- 集类 C \mathcal{C} C 对有限交封闭,则称 C \mathcal{C} C 为 π \pi π类;
- 半环:
∅
∈
C
\emptyset \in \mathcal{C}
∅∈C,对有限交封闭
(
A
,
B
∈
C
⇒
A
∩
B
∈
C
)
(A,B\in \mathcal{C}\Rightarrow A\cap B\in \mathcal{C})
(A,B∈C⇒A∩B∈C),且
A
\
B
∈
C
Σ
f
A\backslash B \in \mathcal{C}_{\Sigma f}
A\B∈CΣf:即
∃
A
i
∈
C
,
i
=
1
,
.
.
.
,
n
,
s
.
t
.
A
\
B
=
∑
i
=
1
n
A
i
\exist A_i\in \mathcal{C},i=1,...,n,s.t.A\backslash B = \sum_{i=1}^nA_i
∃Ai∈C,i=1,...,n,s.t.A\B=∑i=1nAi
(将2.中A取为 Ω \Omega Ω ,可扩展到3.) - 半(集)代数,半域:
C
\mathcal{C}
C 是半环且
Ω
∈
C
\Omega \in \mathcal{C}
Ω∈C
即 { ① ∅ , Ω ∈ C ; ② 对 有 限 交 封 闭 ; ③ ∀ A ∈ C , ∃ A i ∈ C , i = 1 , . . . , n , s . t . A c = ∑ i = 1 n A i ③ ′ ∀ A , B ∈ C , B ⊂ A , 则 A \ B = ∑ i = 1 n A i , A i ∈ C ③ ′ ′ ∀ A , B ∈ C , B ⊂ A , 则 A = B + ∑ i = 1 n A i , A i ∈ C \begin{cases} ① \ \ \emptyset,\Omega \in\mathcal{C} ;\\ ② \ 对有限交封闭;\\ ③ \ \forall A\in \mathcal{C},\exist A_i\in \mathcal{C},i=1,...,n,s.t.\ A^c = \sum_{i=1}^nA_i\\ ③'\ \forall A,B\in \mathcal{C},B\subset A,则 A\backslash B = \sum_{i=1}^nA_i,A_i\in \mathcal{C}\\ ③''\ \forall A,B\in \mathcal{C},B\subset A,则 A= B+\sum_{i=1}^nA_i,A_i\in \mathcal{C}\\ \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧① ∅,Ω∈C;② 对有限交封闭;③ ∀A∈C,∃Ai∈C,i=1,...,n,s.t. Ac=∑i=1nAi③′ ∀A,B∈C,B⊂A,则A\B=∑i=1nAi,Ai∈C③′′ ∀A,B∈C,B⊂A,则A=B+∑i=1nAi,Ai∈C - (集)代数,域:
∅
,
Ω
∈
C
\emptyset,\Omega \in \mathcal{C}
∅,Ω∈C,对有限交、补封闭(或有限并 /差 /对称差、补封闭)
(此时交、差、并、补封闭,极限不一定封闭) -
σ
\sigma
σ代数,
σ
\sigma
σ域:
∅
,
Ω
∈
C
\emptyset,\Omega \in \mathcal{C}
∅,Ω∈C,对可列交、补封闭(或可列并、补封闭)
此时:
lim n → ∞ ‾ A n = ⋂ n = 1 ∞ ⋃ k = n ∞ A k ∈ C lim ‾ n → ∞ A n = ⋃ n = 1 ∞ ⋂ k = n ∞ A k ∈ C \overline{\lim_{n\to\infty}}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k\in \mathcal{C}\\ \underline{\lim}_{n\to \infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k\in \mathcal{C}\\ n→∞limAn=n=1⋂∞k=n⋃∞Ak∈Climn→∞An=n=1⋃∞k=n⋂∞Ak∈C
(特殊类) - 单调类:对单调序列的极限封闭(即 { A n ∈ C , A n ↑ , ⋃ n = 1 ∞ A n ∈ C A n ∈ C , A n ↓ , ⋂ n = 1 ∞ A n ∈ C \begin{cases} A_n\in\mathcal{C},A_n\uparrow,\bigcup_{n=1}^\infty A_n \in \mathcal{C}\\ A_n\in\mathcal{C},A_n\downarrow,\bigcap_{n=1}^\infty A_n \in \mathcal{C} \end{cases} {An∈C,An↑,⋃n=1∞An∈CAn∈C,An↓,⋂n=1∞An∈C)
-
λ
\lambda
λ类:
(
Ⅰ
)
{
①
对
补
封
闭
;
②
A
,
B
∈
C
,
A
∩
B
=
∅
⇒
A
∪
B
∈
C
(
不
交
的
并
封
闭
)
;
③
A
n
∈
C
,
A
n
↑
,
⋃
n
=
1
∞
A
n
∈
C
(
单
调
上
升
序
列
的
极
限
封
闭
)
.
(Ⅰ)\begin{cases} ① \ 对补封闭;\\ ② \ A,B\in \mathcal{C},A\cap B = \emptyset\Rightarrow A\cup B\in \mathcal{C}(不交的并封闭);\\ ③ \ A_n\in\mathcal{C},A_n\uparrow,\bigcup_{n=1}^\infty A_n \in \mathcal{C}(单调上升序列的极限封闭).\\ \end{cases}
(Ⅰ)⎩⎪⎨⎪⎧① 对补封闭;② A,B∈C,A∩B=∅⇒A∪B∈C(不交的并封闭);③ An∈C,An↑,⋃n=1∞An∈C(单调上升序列的极限封闭).
⇕ ( Ⅱ ) { ① ′ Ω ∈ C ; ② ′ A , B ∈ C , B ⊂ A ⇒ A \ B ∈ C ( 真 差 并 封 闭 ) ; ③ A n ∈ C , A n ↑ , ⋃ n = 1 ∞ A n ∈ C ( 单 调 上 升 序 列 的 极 限 封 闭 ) . \ \ \Updownarrow(Ⅱ)\begin{cases} ①' \ \Omega \in \mathcal{C};\\ ②' \ A,B\in \mathcal{C},B\subset A \Rightarrow A\backslash B\in \mathcal{C}(真差并封闭);\\ ③ \ A_n\in\mathcal{C},A_n\uparrow,\bigcup_{n=1}^\infty A_n \in \mathcal{C}(单调上升序列的极限封闭).\\ \end{cases} ⇕(Ⅱ)⎩⎪⎨⎪⎧①′ Ω∈C;②′ A,B∈C,B⊂A⇒A\B∈C(真差并封闭);③ An∈C,An↑,⋃n=1∞An∈C(单调上升序列的极限封闭).
(为什么要分 λ \lambda λ类?)
1.2 单调类定理
相关定义
P
(
Ω
)
:
Ω
\mathcal{P}(\Omega):\Omega
P(Ω):Ω 的所有子集组成的集类
σ
(
C
)
:
\sigma(\mathcal{C}):
σ(C): 给定集类
C
\mathcal{C}
C,一定存在一个最小的
σ
\sigma
σ 域包含
C
\mathcal{C}
C ,称为
C
\mathcal{C}
C 生成的
σ
\sigma
σ 域,记为
σ
(
C
)
\sigma(\mathcal{C})
σ(C)
⇒
\Rightarrow
⇒ 存在
C
\mathcal{C}
C 生成的单调类
m
(
C
)
m(\mathcal{C})
m(C),
λ
\lambda
λ类
λ
(
C
)
\lambda(\mathcal{C})
λ(C),
σ
\sigma
σ代数
σ
(
C
)
\sigma(\mathcal{C})
σ(C)
且恒有
m
(
C
)
⊂
λ
(
C
)
⊂
σ
(
C
)
m(\mathcal{C})\subset\lambda(\mathcal{C})\subset\sigma(\mathcal{C})
m(C)⊂λ(C)⊂σ(C) (条件越多,需要的其中的集合更多)
证:
记
X
\mathscr{X}
X为包含
C
\mathcal{C}
C 的
σ
\sigma
σ域的全体,则
X
\mathscr{X}
X非空(至少
P
(
Ω
)
∈
X
\mathcal{P}(\Omega)\in \mathscr{X}
P(Ω)∈X)
令
G
=
⋂
B
∈
X
B
\mathcal{G} = \bigcap_{\mathcal{B}\in \mathscr{X}}\mathcal{B}
G=⋂B∈XB,则
C
⊂
G
\mathcal{C}\subset\mathcal{G}
C⊂G,可证
G
=
σ
(
C
)
\mathcal{G} = \sigma(\mathcal{C})
G=σ(C).
思考 (整理后即为定理1.2.3)
(1)若
C
\mathcal{C}
C 是代数,且为单调类(单增),设可列
{
A
n
}
∈
C
\{A_n\}\in \mathcal{C}
{An}∈C,是否有
⋃
n
=
1
∞
A
n
∈
C
\bigcup_{n=1}^\infty A_n \in \mathcal{C}
⋃n=1∞An∈C?(即 是否对可列并封闭?)
(
C
\mathcal{C}
C为 代数 + 单调类
⇒
\Rightarrow
⇒
C
\mathcal{C}
C为
σ
\sigma
σ代数 ? )
证 令
B
n
=
⋃
k
=
1
n
A
k
B_n = \bigcup_{k=1}^n A_k
Bn=⋃k=1nAk,
则
B
n
↑
,
B
n
∈
C
B_n\uparrow ,B_n\in \mathcal{C}
Bn↑,Bn∈C且
⋃
n
=
1
∞
B
n
=
⋃
n
=
1
∞
A
n
∈
C
\bigcup_{n=1}^\infty B_n=\bigcup_{n=1}^\infty A_n\in \mathcal{C}
⋃n=1∞Bn=⋃n=1∞An∈C. 即此时
C
\mathcal{C}
C 为
σ
\sigma
σ 代数.
(2)
C
\mathcal{C}
C为
π
\pi
π类 +
λ
\lambda
λ类
⟺
\iff
⟺
C
\mathcal{C}
C为
σ
\sigma
σ代数 ?
证
⇐
:
\Leftarrow:
⇐: 若
C
\mathcal{C}
C 为
σ
\sigma
σ代数,则
C
\mathcal{C}
C 必为
π
\pi
π 类/
λ
\lambda
λ 类
⇒
:
\quad \,\Rightarrow:
⇒: 对非空集类
C
,
∃
A
∈
C
.
\mathcal{C},\exist A\in \mathcal{C}.
C,∃A∈C. 由
λ
\lambda
λ 类性质①,
A
c
∈
C
,
Ω
∈
C
\color{blue}A^c\in \mathcal{C},\Omega \in \mathcal{C}
Ac∈C,Ω∈C;由
π
\pi
π 类性质,
A
∩
A
c
=
∅
∈
C
A\cap A^c = \color{blue}\emptyset \in \mathcal{C}
A∩Ac=∅∈C.
下证
C
对
可
列
交
封
闭
\mathcal{C} \color{blue}{对可列交封闭}
C对可列交封闭:
取
{
A
n
}
∈
C
\{A_n\}\in \mathcal{C}
{An}∈C,令
B
n
=
⋃
k
=
1
n
A
k
B_n = \bigcup^n_{k=1} A_k
Bn=⋃k=1nAk,则有
B
n
↑
.
B_n\uparrow.
Bn↑. 由
λ
\lambda
λ 类性质③,
⋃
n
=
1
∞
A
n
=
⋃
n
=
1
∞
B
n
∈
C
⇒
(
⋃
n
=
1
∞
A
n
)
c
=
⋂
n
=
1
∞
A
n
c
∈
C
\bigcup^\infty_{n=1} A_n=\bigcup^\infty_{n=1} B_n\in\mathcal{C}\Rightarrow(\bigcup^\infty_{n=1} A_n)^c=\bigcap^\infty_{n=1} A_n^c\in\mathcal{C}
⋃n=1∞An=⋃n=1∞Bn∈C⇒(⋃n=1∞An)c=⋂n=1∞Anc∈C.
单调类定理
定理1.2.1
设
C
\mathcal{C}
C 为一集类
(1)若
C
\mathcal{C}
C 为代数,则
m
(
C
)
=
σ
(
C
)
.
m(\mathcal{C})=\sigma(\mathcal{C}).
m(C)=σ(C).
(2)若
C
\mathcal{C}
C 为
π
\pi
π 类,则
λ
(
C
)
=
σ
(
C
)
.
\lambda(\mathcal{C})=\sigma(\mathcal{C}).
λ(C)=σ(C).
证(1):
①
m
(
C
)
⊂
σ
(
C
)
m(\mathcal{C})\subset\sigma(\mathcal{C})
m(C)⊂σ(C) 恒成立
② 下证
σ
(
C
)
⊂
m
(
C
)
\sigma(\mathcal{C})\subset m(\mathcal{C})
σ(C)⊂m(C):
由思考(1) 可知,若
m
(
C
)
m(\mathcal{C})
m(C)是代数,则
m
(
C
)
m(\mathcal{C})
m(C)为
σ
\sigma
σ 代数,即可成立
σ
(
C
)
⊂
m
(
C
)
\sigma(\mathcal{C})\subset m(\mathcal{C})
σ(C)⊂m(C); 由此,下证
m
(
C
)
m(\mathcal{C})
m(C)是代数:
(即证
∀
A
∈
m
(
C
)
,
A
c
∈
m
(
C
)
,
A
∪
B
∈
m
(
C
)
,
∀
B
∈
m
(
C
)
\forall A \in m(\mathcal{C}),A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})
∀A∈m(C),Ac∈m(C),A∪B∈m(C),∀B∈m(C))
构造
M
:
=
{
A
∈
m
(
C
)
∣
A
c
∈
m
(
C
)
,
A
∪
B
∈
m
(
C
)
,
∀
B
∈
m
(
C
)
}
\mathcal{M}:=\left\{A\in m(\mathcal{C})|A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})\right\}
M:={A∈m(C)∣Ac∈m(C),A∪B∈m(C),∀B∈m(C)}
(
⟺
M
=
{
A
∣
A
∈
m
(
C
)
,
A
c
∈
m
(
C
)
,
A
∪
B
∈
m
(
C
)
,
∀
B
∈
m
(
C
)
)
\color{blue}(\iff\mathcal{M}=\{A|A\in m(\mathcal{C}),A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C}))
(⟺M={A∣A∈m(C),Ac∈m(C),A∪B∈m(C),∀B∈m(C))
首先有
M
⊂
m
(
C
)
\mathcal{M}\subset m(\mathcal{C})
M⊂m(C),是否有
m
(
C
)
⊂
M
?
m(\mathcal{C})\subset \mathcal{M}?
m(C)⊂M? 即
{
(
1.1
)
C
⊂
M
(
1.2
)
M
是
单
调
类
\begin{cases} (1.1)\mathcal{C}\subset\mathcal{M}\\ (1.2)\mathcal{M}是单调类 \end{cases}
{(1.1)C⊂M(1.2)M是单调类
(由
C
\mathcal{C}
C 是代数可知,有限并封闭不一定成立,即无法证明
M
\mathcal{M}
M是代数)
-
(1.1)’ 构造 M 1 : = { A ∈ m ( C ) ∣ A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ C } \mathcal{M}_1:=\left\{A\in m(\mathcal{C})|A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in \mathcal{C}\right\} M1:={A∈m(C)∣Ac∈m(C),A∪B∈m(C),∀B∈C},则有 C ⊂ M 1 \mathcal{C}\subset\mathcal{M}_1 C⊂M1
( ⟺ M 1 = { A ∣ A ∈ m ( C ) , A c ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ C ) \color{blue}(\iff\mathcal{M}_1=\{A|A\in m(\mathcal{C}),A^c\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in \mathcal{C}) (⟺M1={A∣A∈m(C),Ac∈m(C),A∪B∈m(C),∀B∈C) -
(1.2)’ 取 { A n } ∈ M 1 , A n ↑ \{A_n\}\in \mathcal{M}_1,A_n\uparrow {An}∈M1,An↑,则 A n c ∈ m ( C ) , A n ∪ B ∈ m ( C ) , ∀ B ∈ C A_n^c\in m(\mathcal{C}),A_n\cup B\in m(\mathcal{C}),\forall B\in \mathcal{C} Anc∈m(C),An∪B∈m(C),∀B∈C
由 ( ⋃ A n ) c = ⋂ A n c ∈ m ( C ) , ( ⋃ A n ) ∪ B = ⋃ ( A n ∪ B ) ∈ m ( C ) , ∀ B ∈ C (\bigcup A_n)^c = \bigcap A_n^c\in m(\mathcal{C}),(\bigcup A_n)\cup B=\bigcup (A_n\cup B)\in m(\mathcal{C}),\forall B\in \mathcal{C} (⋃An)c=⋂Anc∈m(C),(⋃An)∪B=⋃(An∪B)∈m(C),∀B∈C,可知 ⋃ A n ∈ M 1 \bigcup A_n\in\mathcal{M}_1 ⋃An∈M1;因此 M 1 \mathcal{M}_1 M1 是单调类
由(1.1)’, (1.2)’ 知 m ( C ) ⊂ M 1 m(\mathcal{C})\subset \mathcal{M}_1 m(C)⊂M1,因此 m ( C ) = M 1 m(\mathcal{C})= \mathcal{M}_1 m(C)=M1;由 M 1 \mathcal{M}_1 M1性质可知 m ( C ) m(\mathcal{C}) m(C) 对补封闭。 -
(1.1)’’ 构造 M 2 : = { A ∈ m ( C ) ∣ A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) } \mathcal{M}_2:=\left\{A\in m(\mathcal{C})|A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})\right\} M2:={A∈m(C)∣A∪B∈m(C),∀B∈m(C)}
( ⟺ M 2 = { A ∣ A ∈ m ( C ) , A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) } \color{blue}(\iff\mathcal{M}_2=\{A|A\in m(\mathcal{C}),A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C})\} (⟺M2={A∣A∈m(C),A∪B∈m(C),∀B∈m(C)}
任取 A ∈ C ⊂ m ( C ) = M 1 , A\in\mathcal{C}\subset m(\mathcal{C})=\mathcal{M}_1, A∈C⊂m(C)=M1,由 M 1 \mathcal{M}_1 M1的性质可知, A ∪ B ∈ m ( C ) , ∀ B ∈ m ( C ) A\cup B\in m(\mathcal{C}),\forall B\in m(\mathcal{C}) A∪B∈m(C),∀B∈m(C),即 A ∈ M 2 ⇒ C ⊂ M 2 A\in \mathcal{M}_2\Rightarrow\mathcal{C}\subset\mathcal{M}_2 A∈M2⇒C⊂M2 -
(1.2)’'类似可证 M 2 \mathcal{M}_2 M2是单调类
同理有 m ( C ) = M 2 m(\mathcal{C})= \mathcal{M}_2 m(C)=M2;由 M 1 \mathcal{M}_1 M1性质可知 m ( C ) m(\mathcal{C}) m(C) 对有限并封闭。
⇒ m ( C ) = M 1 = M 2 \textcolor{blue}{\Rightarrow m(\mathcal{C})=\mathcal{M}_1=\mathcal{M}_2} ⇒m(C)=M1=M2
由1-4可知, m ( C ) m(\mathcal{C}) m(C) 是代数。#
证(2): (同上证明)
①
λ
(
C
)
⊂
σ
(
C
)
\lambda(\mathcal{C})\subset\sigma(\mathcal{C})
λ(C)⊂σ(C) 恒成立
② 下证
σ
(
C
)
⊂
λ
(
C
)
\sigma(\mathcal{C})\subset \lambda(\mathcal{C})
σ(C)⊂λ(C):
由思考(2)可知,若
λ
(
C
)
\lambda(\mathcal{C})
λ(C) 是
π
\pi
π 类,则
λ
(
C
)
\lambda(\mathcal{C})
λ(C) 是
σ
\sigma
σ 域,此时成立
σ
(
C
)
⊂
λ
(
C
)
\sigma(\mathcal{C})\subset \lambda(\mathcal{C})
σ(C)⊂λ(C);由此下证
λ
(
C
)
\lambda(\mathcal{C})
λ(C) 对有限交封闭:
(即证
∀
A
,
B
∈
λ
(
C
)
\forall A,B \in \lambda(\mathcal{C})
∀A,B∈λ(C),成立
A
∩
B
∈
λ
(
C
)
A\cap B\in \lambda(\mathcal{C})
A∩B∈λ(C))
构造
G
:
=
{
A
∈
λ
(
C
)
∣
A
∩
B
∈
λ
(
C
)
,
∀
B
∈
λ
(
C
)
}
\mathcal{G}:=\{A\in\lambda(\mathcal{C})|A\cap B\in \lambda(\mathcal{C}),\forall B\in\lambda(\mathcal{C})\}
G:={A∈λ(C)∣A∩B∈λ(C),∀B∈λ(C)}
(
⟺
G
=
{
A
∣
A
∈
λ
(
C
)
,
A
∩
B
∈
λ
(
C
)
,
∀
B
∈
λ
(
C
)
)
\color{blue}(\iff\mathcal{G}=\{A|A\in\lambda(\mathcal{C}),A\cap B\in \lambda(\mathcal{C}),\forall B\in\lambda(\mathcal{C}))
(⟺G={A∣A∈λ(C),A∩B∈λ(C),∀B∈λ(C))
首先有
G
⊂
λ
(
C
)
\mathcal{G}\subset\lambda(\mathcal{C})
G⊂λ(C),是否有
λ
(
C
)
⊂
G
?
{
(
2.1
)
C
⊂
G
(
2.2
)
G
是
λ
类
\lambda(\mathcal{C})\subset\mathcal{G}?\begin{cases} (2.1)\mathcal{C}\subset\mathcal{G}\\ (2.2)\mathcal{G}是\lambda 类 \end{cases}
λ(C)⊂G?{(2.1)C⊂G(2.2)G是λ类
(
λ
\lambda
λ 类不保证有限交封闭)
- (2.1) '构造
G
1
:
=
{
A
∈
λ
(
C
)
∣
A
∩
B
∈
λ
(
C
)
,
∀
B
∈
C
}
\mathcal{G}_1:=\{A\in\lambda(\mathcal{C})|A\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}\}
G1:={A∈λ(C)∣A∩B∈λ(C),∀B∈C}
( ⟺ G 1 = { A ∣ A ∈ λ ( C ) , A ∩ B ∈ λ ( C ) , ∀ B ∈ C } ) \color{blue}(\iff\mathcal{G}_1=\{A|A\in\lambda(\mathcal{C}),A\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}\}) (⟺G1={A∣A∈λ(C),A∩B∈λ(C),∀B∈C})
任取 A ∈ C A\in \mathcal{C} A∈C,由 C \mathcal{C} C 是 π \pi π 类可知 A ∩ B ∈ C ⊂ λ ( C ) , ∀ B ∈ C A\cap B\in \mathcal{C}\subset\lambda(\mathcal{C}),\forall B\in\mathcal{C} A∩B∈C⊂λ(C),∀B∈C,即 A ∈ G 1 ⇒ C ⊂ G 1 A\in \mathcal{G}_1\Rightarrow \mathcal{C}\subset\mathcal{G}_1 A∈G1⇒C⊂G1 - (2.2) '①任取
A
∈
G
1
A\in \mathcal{G}_1
A∈G1,要证
A
c
∈
G
1
A^c\in \mathcal{G}_1
Ac∈G1,即
A
c
∈
λ
(
C
)
,
A
c
∩
B
∈
λ
(
C
)
,
∀
B
∈
C
A^c\in\lambda(\mathcal{C}),A^c\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}
Ac∈λ(C),Ac∩B∈λ(C),∀B∈C.
由 λ ( C ) \lambda(\mathcal{C}) λ(C)性质知 A c ∈ λ ( C ) A^c\in \lambda(\mathcal{C}) Ac∈λ(C),同理对 ∀ B ∈ C ⊂ λ ( C ) \forall B\in\mathcal{C}\subset\lambda (\mathcal{C}) ∀B∈C⊂λ(C),有 B c ∈ λ ( C ) , ( A c ∩ B ) c = A ∪ B c = ( A ∩ B ) ∪ B c ∈ λ ( C ) B^c\in\lambda (\mathcal{C}),(A^c\cap B)^c=A\cup B^c=(A\cap B)\cup B^c\in \lambda(\mathcal{C}) Bc∈λ(C),(Ac∩B)c=A∪Bc=(A∩B)∪Bc∈λ(C) ( 不 交 的 并 封 闭 ) \color{green}(不交的并封闭) (不交的并封闭),得证。
( A = A ∩ Ω = ( A ∩ B ) ∪ ( A ∩ B c ) \color{green}A = A\cap\Omega =(A\cap B)\cup (A\cap B^c) A=A∩Ω=(A∩B)∪(A∩Bc))
②任取 A 1 , A 2 ∈ G 1 , 且 A 1 ∩ A 2 = ∅ A_1,A_2\in\mathcal{G}_1,且A_1\cap A_2=\empty A1,A2∈G1,且A1∩A2=∅. 要证 A 1 ∪ A 2 ∈ G 1 A_1\cup A_2\in \mathcal{G}_1 A1∪A2∈G1,即 A 1 ∪ A 2 ∈ λ ( C ) , ( A 1 ∪ A 2 ) ∩ B ∈ λ ( C ) , ∀ B ∈ C A_1\cup A_2\in\lambda(\mathcal{C}),(A_1\cup A_2)\cap B\in \lambda(\mathcal{C}),\forall B\in \mathcal{C} A1∪A2∈λ(C),(A1∪A2)∩B∈λ(C),∀B∈C.
由 λ ( C ) \lambda(\mathcal{C}) λ(C)对不交并封闭知, A 1 ∪ A 2 ∈ λ ( C ) A_1\cup A_2\in\lambda(\mathcal{C}) A1∪A2∈λ(C);又 ∀ B ∈ C : ( A 1 ∩ B ) ∩ ( A 2 ∩ B ) = ∅ , ( A 1 ∪ A 2 ) ∩ B = ( A 1 ∩ B ) ∪ ( A 2 ∩ B ) ∈ λ ( C ) ( 不 交 的 并 封 闭 ) . \forall B\in\mathcal{C}:(A_1\cap B)\cap(A_2\cap B)=\empty ,(A_1\cup A_2)\cap B = (A_1\cap B)\cup(A_2\cap B)\in \lambda(\mathcal{C})\textcolor{green} {(不交的并封闭)}. ∀B∈C:(A1∩B)∩(A2∩B)=∅,(A1∪A2)∩B=(A1∩B)∪(A2∩B)∈λ(C)(不交的并封闭).得证。
③任取 { A n } ∈ G 1 , 且 A n ↑ \{A_n\}\in\mathcal{G}_1,且A_n\uparrow {An}∈G1,且An↑,要证 ⋃ n A n ∈ G 1 \bigcup_nA_n\in\mathcal{G}_1 ⋃nAn∈G1,即 ⋃ n A n ∈ λ ( C ) , ( ⋃ n A n ) ∩ B ∈ λ ( C ) , ∀ B ∈ C . \bigcup_nA_n\in \lambda(\mathcal{C}),(\bigcup_nA_n)\cap B\in \lambda(\mathcal{C}),\forall B\in\mathcal{C}. ⋃nAn∈λ(C),(⋃nAn)∩B∈λ(C),∀B∈C.
由 λ ( C ) \lambda(\mathcal{C}) λ(C)性质知 ⋃ n A n ∈ λ ( C ) , ( ⋃ n A n ) ∩ B = ⋃ n ( A n ∩ B ) ∈ λ ( C ) ( 不 降 序 列 的 极 限 封 闭 ) , ∀ B ∈ C \bigcup_nA_n\in \lambda(\mathcal{C}),(\bigcup_nA_n)\cap B=\bigcup_n(A_n\cap B)\in \lambda(\mathcal{C}) \textcolor{green} {(不降序列的极限封闭)},\forall B\in\mathcal{C} ⋃nAn∈λ(C),(⋃nAn)∩B=⋃n(An∩B)∈λ(C)(不降序列的极限封闭),∀B∈C,得证。
由1-2知,
G
1
=
λ
(
C
)
\mathcal{G}_1 = \lambda(\mathcal{C})
G1=λ(C).
3. (2.1) 任取
A
∈
C
,
则
A
∈
λ
(
C
)
,
且
∀
B
∈
λ
(
C
)
=
G
1
:
A
∩
B
∈
λ
(
C
)
⇒
A
∈
G
A\in \mathcal{C},则A\in\lambda(\mathcal{C}),且\forall B\in \lambda(\mathcal{C})=\mathcal{G}_1 :A\cap B\in \lambda(\mathcal{C})\Rightarrow A\in\mathcal{G}
A∈C,则A∈λ(C),且∀B∈λ(C)=G1:A∩B∈λ(C)⇒A∈G
4. (2.2) 同(2.2)'可证
G
\mathcal{G}
G 是
λ
\lambda
λ类。
由3-4知,
G
=
λ
(
C
)
\mathcal{G} = \lambda(\mathcal{C})
G=λ(C).
⇒
λ
(
C
)
=
G
=
G
1
\textcolor{blue}{\Rightarrow \lambda(\mathcal{C})=\mathcal{G}=\mathcal{G}_1}
⇒λ(C)=G=G1
因此
λ
(
C
)
\lambda(\mathcal{C})
λ(C) 对有限交封闭。#
定理1.2.1称为单调类定理
有推论如下:
定理1.2.2
设
C
,
F
\mathcal{C,F}
C,F 为两个集类,且
C
⊂
F
\mathcal{C}\subset\mathcal{F}
C⊂F:
(1)若
C
\mathcal{C}
C 为代数,且
F
\mathcal{F}
F 为单调类,则
σ
(
C
)
⊂
F
;
\sigma(\mathcal{C})\subset\mathcal{F};
σ(C)⊂F;
(2)若
C
\mathcal{C}
C 为
π
\pi
π 类,且
F
\mathcal{F}
F 为
λ
\lambda
λ 类,则
σ
(
C
)
⊂
F
;
\sigma(\mathcal{C})\subset\mathcal{F};
σ(C)⊂F;
由定理1.2.1的证明可知,(即“思考”整理后的定理)
定理1.2.3
设
C
\mathcal{C}
C 为一集类:
(1)
m
(
C
)
=
σ
(
C
)
⟺
m
(
C
)
为
一
个
代
数
m(\mathcal{C}) = \sigma(\mathcal{C})\iff \textcolor{gray}{m(\mathcal{C})为一个代数}
m(C)=σ(C)⟺m(C)为一个代数
⟺
A
∈
C
⇒
A
c
∈
m
(
C
)
;
A
,
B
∈
C
⇒
A
∩
B
∈
m
(
C
)
\quad \quad \quad \quad \quad \quad \quad \quad\iff A\in \mathcal{C}\Rightarrow A^c\in m(\mathcal{C});A,B\in\mathcal{C}\Rightarrow A\cap B\in m(\mathcal{C})
⟺A∈C⇒Ac∈m(C);A,B∈C⇒A∩B∈m(C)
⟺
A
∈
C
⇒
A
c
∈
m
(
C
)
;
A
,
B
∈
C
⇒
A
∪
B
∈
m
(
C
)
\color{gray}\quad \quad \quad \quad \quad \quad \quad \quad\iff A\in \mathcal{C}\Rightarrow A^c\in m(\mathcal{C});A,B\in\mathcal{C}\Rightarrow A\cup B\in m(\mathcal{C})
⟺A∈C⇒Ac∈m(C);A,B∈C⇒A∪B∈m(C)
(2)
λ
(
C
)
=
σ
(
C
)
⟺
λ
(
C
)
为
一
个
π
类
\lambda(\mathcal{C}) = \sigma(\mathcal{C})\iff \textcolor{gray}{\lambda(\mathcal{C})为一个 \pi类}
λ(C)=σ(C)⟺λ(C)为一个π类
⟺
A
,
B
∈
C
⇒
A
∩
B
∈
λ
(
C
)
\quad \quad \quad \quad \quad \quad \quad \quad\iff A,B\in\mathcal{C}\Rightarrow A\cap B \in\lambda(\mathcal{C})
⟺A,B∈C⇒A∩B∈λ(C)
⟺
A
,
B
∈
C
⇒
A
∪
B
∈
λ
(
C
)
\color{gray}\quad \quad \quad \quad \quad \quad \quad \quad\iff A,B\in\mathcal{C}\Rightarrow A\cup B \in\lambda(\mathcal{C})
⟺A,B∈C⇒A∪B∈λ(C)
上述定理在实际中运用较少,而如下推论常在实例中运用:
定理1.2.5
设
C
\mathcal{C}
C 为一集类,若满足下列条件之一,则有
m
(
C
)
=
σ
(
C
)
:
m(\mathcal{C}) = \sigma(\mathcal{C}):
m(C)=σ(C):
(1)
A
,
B
∈
C
⇒
A
∩
B
∈
C
;
A
∈
C
⇒
A
c
∈
C
δ
A,B\in \mathcal{C}\Rightarrow A\cap B\in \mathcal{C};A\in \mathcal{C}\Rightarrow A^c\in \mathcal{C}_\delta
A,B∈C⇒A∩B∈C;A∈C⇒Ac∈Cδ
(2)
A
,
B
∈
C
⇒
A
∪
B
∈
C
;
A
∈
C
⇒
A
c
∈
C
σ
A,B\in \mathcal{C}\Rightarrow A\cup B\in \mathcal{C};A\in \mathcal{C}\Rightarrow A^c\in \mathcal{C}_\sigma
A,B∈C⇒A∪B∈C;A∈C⇒Ac∈Cσ
证:若
C
\mathcal{C}
C 对有限交封闭,则
C
δ
⊂
m
(
C
)
\mathcal{C}_\delta\subset m(\mathcal{C})
Cδ⊂m(C);若
C
\mathcal{C}
C 对有限并封闭,则
C
σ
⊂
m
(
C
)
\mathcal{C}_\sigma\subset m(\mathcal{C})
Cσ⊂m(C).
Lesson 4:Chp1
1.3 测度与非负集函数
相关定义
可测空间 :设
F
\mathcal{F}
F 为
Ω
\Omega
Ω 上的一
σ
\sigma
σ 代数,则(
Ω
,
F
\Omega,\mathcal{F}
Ω,F)为一可测空间
F
\mathcal{F}
F可测集 :(
Ω
,
F
\Omega,\mathcal{F}
Ω,F)中元素即称
F
\mathcal{F}
F 可测集
可分的/可数可分的:
∃
F
\exist \ \mathcal{F}
∃ F 的可数子类
C
\mathcal{C}
C,
s
.
t
.
F
=
σ
(
C
)
s.t. \mathcal{F}=\sigma(\mathcal{C})
s.t.F=σ(C)
可分可测空间:若
F
\mathcal{F}
F 可分,则(
Ω
,
F
\Omega,\mathcal{F}
Ω,F)为一可分可测空间
测度
定义1.3.1
设(
Ω
,
F
\Omega,\mathcal{F}
Ω,F)为一可测空间,
μ
:
F
↦
R
+
\mu:\mathcal{F}\mapsto\mathbb{R}_+
μ:F↦R+,若满足
①
μ
(
∅
)
=
0
\mu (\empty) = 0
μ(∅)=0
② 可数可加性/
σ
\sigma
σ可加性:
{
A
n
}
∈
F
,
A
n
∩
A
m
=
∅
,
n
≠
m
⇒
μ
(
∑
n
=
1
∞
A
n
)
=
∑
n
=
1
∞
μ
(
A
n
)
\{A_n\}\in\mathcal{F},A_n\cap A_m = \empty,n\not=m\Rightarrow\mu(\sum_{n=1}^\infty A_n) = \sum_{n=1}^\infty\mu(A_n)
{An}∈F,An∩Am=∅,n=m⇒μ(∑n=1∞An)=∑n=1∞μ(An)
则称
μ
\mu
μ 为(
Ω
,
F
\Omega,\mathcal{F}
Ω,F)上的测度。
(
Ω
,
F
)
(\Omega,\mathcal{F})
(Ω,F) 上
μ
\mu
μ 的基本性质:
(1) 单调性:
A
,
B
∈
F
,
A
⊂
B
⇒
μ
(
A
)
⩽
μ
(
B
)
.
A,B\in\mathcal{F},A\subset B\Rightarrow \mu(A)\leqslant\mu(B).
A,B∈F,A⊂B⇒μ(A)⩽μ(B).
(2) 可减性:
A
,
B
∈
F
,
A
⊂
B
,
μ
(
B
)
<
∞
⇒
μ
(
B
\
A
)
=
μ
(
B
)
−
μ
(
A
)
.
A,B\in\mathcal{F},A\subset B,\mu(B)<\infty\Rightarrow \mu(B\backslash A)=\mu(B)-\mu(A).
A,B∈F,A⊂B,μ(B)<∞⇒μ(B\A)=μ(B)−μ(A).
测度空间:
(
Ω
,
F
,
μ
)
(\Omega,\mathcal{F},\mu)
(Ω,F,μ)
有限测度空间:
μ
(
Ω
)
<
∞
的
(
Ω
,
F
,
μ
)
\mu(\Omega)<\infty的(\Omega,\mathcal{F},\mu)
μ(Ω)<∞的(Ω,F,μ),
μ
\mu
μ 称为有限测度。
概率空间:
μ
(
Ω
)
=
1
的
(
Ω
,
F
,
μ
)
\mu(\Omega)=1的(\Omega,\mathcal{F},\mu)
μ(Ω)=1的(Ω,F,μ),
μ
\mu
μ 称为概率测度。
σ
\sigma
σ 有限测度空间:
∃
{
A
n
}
∈
F
,
s
.
t
.
⋃
n
A
n
=
Ω
且
∀
n
≥
1
:
μ
(
A
n
)
<
∞
的
(
Ω
,
F
,
μ
)
\exist\{A_n\}\in\mathcal{F},s.t.\bigcup_n A_n=\Omega且 \ \forall n\ge1:\mu(A_n)<\infty的(\Omega,\mathcal{F},\mu)
∃{An}∈F,s.t.⋃nAn=Ω且 ∀n≥1:μ(An)<∞的(Ω,F,μ),
μ
\mu
μ 称为
σ
\sigma
σ 有限测度。
有限测度与概率测度转化:
取
A
∈
F
A\in \mathcal{F}
A∈F,设
ν
(
A
)
=
μ
(
A
)
μ
(
Ω
)
(
=
μ
(
A
∩
Ω
)
μ
(
Ω
)
=
ν
(
A
∩
Ω
)
)
\nu(A) =\dfrac{\mu(A)}{\mu(\Omega)}\left(=\dfrac{\mu(A\cap\Omega)}{\mu(\Omega)} = \nu(A\cap \Omega)\right)
ν(A)=μ(Ω)μ(A)(=μ(Ω)μ(A∩Ω)=ν(A∩Ω)),得
ν
\nu
ν 为概率测度。
σ
\sigma
σ 有限测度与概率测度转化:
引理1.3.5
对于
(
Ω
,
F
,
μ
)
(\Omega,\mathcal{F},\mu)
(Ω,F,μ),取
Ω
\Omega
Ω 的一个可数划分
{
A
n
}
,
s
.
t
.
Ω
=
∑
n
∞
A
n
,
且
∀
n
≥
1
:
μ
(
A
n
)
<
∞
,
A
n
∈
F
.
∀
A
∈
F
:
令
ν
(
A
∩
A
m
)
=
μ
(
A
∩
A
m
)
2
m
μ
(
A
m
)
\{A_n\},s.t.\Omega = \sum_n^\infty A_n,且\ \forall n\ge1:\mu(A_n)<\infty,A_n\in\mathcal{F}.\forall A\in \mathcal{F}:令\ \nu(A\cap A_m) = \dfrac{\mu(A\cap A_m)}{2^m\mu(A_m)}
{An},s.t.Ω=∑n∞An,且 ∀n≥1:μ(An)<∞,An∈F.∀A∈F:令 ν(A∩Am)=2mμ(Am)μ(A∩Am),即
ν
(
A
)
=
(
∑
n
=
1
∞
ν
(
A
∩
A
n
)
=
)
∑
n
=
1
∞
μ
(
A
∩
A
n
)
2
n
μ
(
A
n
)
\nu(A) =\left( \sum_{n=1}^\infty\nu(A\cap A_n) =\right) \sum_{n=1}^\infty \dfrac{\mu(A\cap A_n)}{2^n\mu(A_n)}
ν(A)=(n=1∑∞ν(A∩An)=)n=1∑∞2nμ(An)μ(A∩An)
则
ν
\nu
ν 为
(
Ω
,
F
)
(\Omega,\mathcal{F})
(Ω,F) 上的一个概率测度,同时有
ν
(
A
)
=
0
⟺
μ
(
A
)
=
0
\nu(A)=0\iff\mu(A)=0
ν(A)=0⟺μ(A)=0,
∀
A
∈
F
:
\forall A\in \mathcal{F}:
∀A∈F:
μ
(
A
)
=
(
∑
n
=
1
∞
μ
(
A
∩
A
n
)
=
)
∑
n
=
1
∞
2
n
μ
(
A
n
)
ν
(
A
∩
A
n
)
\mu(A) =\left( \sum_{n=1}^\infty\mu(A\cap A_n) =\right) \sum_{n=1}^\infty 2^n\mu(A_n)\nu(A\cap A_n)
μ(A)=(n=1∑∞μ(A∩An)=)n=1∑∞2nμ(An)ν(A∩An)
当前目标: ( C , μ ) → 扩 张 ( σ ( C ) , μ ~ ) (\mathcal{C},\mu)\xrightarrow[扩张]{}(\sigma(\mathcal{C}),\tilde{\mu}) (C,μ)扩张(σ(C),μ~)(从简单集类扩张至性质较好的集类)
非负集函数
定义1.3.2(集函数分类)
C
\mathcal{C}
C :任一集类;
μ
:
C
↦
[
0
,
∞
)
\mu:\mathcal{C}\mapsto[0,\infty)
μ:C↦[0,∞)集函数;
要求:
∅
∈
C
,
μ
(
∅
)
=
0
;
A
,
B
∈
C
,
A
⊂
B
⇒
μ
(
A
)
⩽
μ
(
B
)
;
\empty\in\mathcal{C},\mu(\empty)=0;A,B\in \mathcal{C},A\subset B\Rightarrow\mu(A)\leqslant\mu(B);
∅∈C,μ(∅)=0;A,B∈C,A⊂B⇒μ(A)⩽μ(B);
- 有限可加的 ( μ ) : A i ∈ C , 1 ⩽ i ⩽ n , ∑ i = 1 n A i ∈ C ⇒ μ ( ∑ i = 1 n A i ) = ∑ i = 1 n μ ( A i ) ; (\mu):A_i\in\mathcal{C},1\leqslant i\leqslant n,\sum_{i=1}^n A_i\in\mathcal{C}\Rightarrow\mu(\sum_{i=1}^n A_i)=\sum_{i=1}^n \mu(A_i); (μ):Ai∈C,1⩽i⩽n,∑i=1nAi∈C⇒μ(∑i=1nAi)=∑i=1nμ(Ai);
- σ \sigma σ 可加的 ( μ ) : A i ∈ C , i ∈ N , ∑ i = 1 ∞ A i ∈ C ⇒ μ ( ∑ i = 1 ∞ A i ) = ∑ i = 1 ∞ μ ( A i ) ; 即 测 度 性 质 (\mu):A_i\in\mathcal{C},i\in\mathbb{N},\sum_{i=1}^\infty A_i\in\mathcal{C}\Rightarrow\mu(\sum_{i=1}^\infty A_i)=\sum_{i=1}^\infty \mu(A_i);\color{blue}即测度性质 (μ):Ai∈C,i∈N,∑i=1∞Ai∈C⇒μ(∑i=1∞Ai)=∑i=1∞μ(Ai);即测度性质
- 半 σ \sigma σ 可加的 ( μ ) : A i ∈ C , i ∈ N ; A ∈ C , A ⊂ ⋃ i = 1 ∞ A i ⇒ μ ( A ) ⩽ ∑ i = 1 ∞ μ ( A i ) ; (\mu):A_i\in\mathcal{C},i\in\mathbb{N};A\in\mathcal{C},A\subset\bigcup_{i=1}^\infty A_i \Rightarrow\mu(A)\leqslant\sum_{i=1}^\infty \mu(A_i); (μ):Ai∈C,i∈N;A∈C,A⊂⋃i=1∞Ai⇒μ(A)⩽∑i=1∞μ(Ai);
- 从下连续 ( μ ) : A n ∈ C , A n ↑ A ∈ C ⇒ μ ( A ) = lim n → ∞ μ ( A n ) ; (\mu):A_n\in\mathcal{C},A_n\uparrow A\in\mathcal{C} \Rightarrow\mu(A)=\lim_{n\to\infty}\mu(A_n); (μ):An∈C,An↑A∈C⇒μ(A)=limn→∞μ(An);
- 从上连续 ( μ ) : A n ∈ C , A n ↓ A ∈ C , μ ( A 1 ) < ∞ ⇒ μ ( A ) = lim n → ∞ μ ( A n ) ; (\mu):A_n\in\mathcal{C},A_n\downarrow A\in\mathcal{C},\mu(A_1)<\infty\Rightarrow\mu(A)=\lim_{n\to\infty}\mu(A_n); (μ):An∈C,An↓A∈C,μ(A1)<∞⇒μ(A)=limn→∞μ(An);
- 在空集处连续 ( μ ) : A n ∈ C , A n ↓ ∅ ∈ C , μ ( A 1 ) < ∞ ⇒ ( μ ( ∅ ) = ) lim n → ∞ μ ( A n ) = 0 ; (\mu):A_n\in\mathcal{C},A_n\downarrow \empty\in\mathcal{C},\mu(A_1)<\infty\Rightarrow(\mu(\empty)=)\lim_{n\to\infty}\mu(A_n)=0; (μ):An∈C,An↓∅∈C,μ(A1)<∞⇒(μ(∅)=)limn→∞μ(An)=0;
(3)从下连续:取 A i ∈ F , A i ↑ A = ⋃ i A i ∈ F ( σ 代 数 性 质 ) ⇒ μ ( A ) = lim i → ∞ μ ( A i ) A_i \in \mathcal{F},A_i\uparrow A=\bigcup_i A_i\in \mathcal{F}\textcolor{blue}{(\sigma代数性质)}\Rightarrow\mu(A)=\lim_{i\to\infty}\mu(A_i) Ai∈F,Ai↑A=⋃iAi∈F(σ代数性质)⇒μ(A)=limi→∞μ(Ai)
证明:构造
B
1
=
A
1
,
B
2
=
A
2
\
A
1
,
.
.
.
,
B
n
=
A
n
\
A
n
−
1
,
.
.
.
B_1=A_1,B_2 = A2\backslash A_1,...,B_n = A_n\backslash A_{n-1},...
B1=A1,B2=A2\A1,...,Bn=An\An−1,...
则
⋃
A
i
=
⋃
B
i
=
∑
B
i
,
μ
(
⋃
A
i
)
=
μ
(
∑
B
i
)
=
∑
i
=
1
∞
μ
(
B
i
)
=
μ
(
A
1
)
+
∑
i
=
2
∞
μ
(
A
i
)
−
μ
(
A
i
−
1
)
=
lim
i
→
∞
μ
(
A
i
)
\bigcup A_i=\bigcup B_i=\sum B_i,\mu(\bigcup A_i)=\mu(\sum B_i)=\sum_{i=1}^\infty\mu(B_i)=\mu(A_1)+\sum_{i=2}^\infty\mu(A_i)-\mu(A_{i-1})=\lim_{i\to\infty}\mu(A_i)
⋃Ai=⋃Bi=∑Bi,μ(⋃Ai)=μ(∑Bi)=∑i=1∞μ(Bi)=μ(A1)+∑i=2∞μ(Ai)−μ(Ai−1)=limi→∞μ(Ai)
(4)从上连续:取 A i ∈ F , A i ↓ A = ⋂ i A i ∈ F ( σ 代 数 性 质 ) , μ ( A 1 ) < ∞ ⇒ μ ( A ) = lim i → ∞ μ ( A i ) A_i \in \mathcal{F},A_i\downarrow A=\bigcap_i A_i\in \mathcal{F}\textcolor{blue}{(\sigma代数性质)},\mu(A_1)<\infty\Rightarrow\mu(A)=\lim_{i\to\infty}\mu(A_i) Ai∈F,Ai↓A=⋂iAi∈F(σ代数性质),μ(A1)<∞⇒μ(A)=limi→∞μ(Ai)
同(3)可证。
定理1.3.4 (对于普通集类上的集函数)
设
C
\mathcal{C}
C为一代数,
μ
\mu
μ 为
C
\mathcal{C}
C 上一有限可加的非负集函数,则:
①
μ
\mu
μ 从下连续
⟺
μ
\iff\mu
⟺μ 为可列可加的
⇒
μ
\Rightarrow \mu
⇒μ 从上连续
⇒
μ
\Rightarrow\mu
⇒μ 在
∅
\empty
∅ 处连续
②若
μ
(
Ω
)
<
∞
\mu(\Omega)<\infty
μ(Ω)<∞,则:
μ
\mu
μ 从下连续
⟺
μ
\iff\mu
⟺μ 为可列可加的
⟺
μ
\iff \mu
⟺μ 从上连续
⟺
μ
\iff\mu
⟺μ 在
∅
\empty
∅ 处连续
证:设
μ
\mu
μ 从下连续,取
A
n
∈
C
A_n\in\mathcal{C}
An∈C,且满足
∑
n
=
1
∞
A
n
∈
C
.
\sum_{n=1}^\infty A_n\in\mathcal{C}.
∑n=1∞An∈C.令
B
n
=
∑
k
=
1
n
A
k
,
则
B
n
↑
∈
C
,
⋃
n
B
n
=
∑
n
=
1
∞
A
n
:
B_n = \sum_{k=1}^n A_k,则B_n\uparrow\in\mathcal{C},\bigcup_nB_n=\sum_{n=1}^\infty A_n:
Bn=∑k=1nAk,则Bn↑∈C,⋃nBn=∑n=1∞An:
μ
(
∑
n
=
1
∞
A
n
)
=
μ
(
⋃
n
B
n
)
=
(
从
下
连
续
)
lim
n
→
∞
μ
(
B
n
)
=
(
有
限
可
加
)
lim
n
→
∞
∑
k
=
1
n
μ
(
A
k
)
=
∑
n
=
1
∞
μ
(
A
n
)
\mu(\sum_{n=1}^\infty A_n)=\mu(\bigcup_nB_n)=\textcolor{blue}{(从下连续)}\lim_{n\to\infty}\mu(B_n)=\textcolor{blue}{(有限可加)}\lim_{n\to\infty}\sum_{k=1}^n\mu(A_k)=\sum_{n=1}^\infty\mu(A_n)
μ(n=1∑∞An)=μ(n⋃Bn)=(从下连续)n→∞limμ(Bn)=(有限可加)n→∞limk=1∑nμ(Ak)=n=1∑∞μ(An)
即
μ
\mu
μ有
σ
\sigma
σ可加性。#
1.4 外测度与测度的扩张
本节研究如何把一半环
C
\mathcal{C}
C上的一
σ
\sigma
σ可加非负集函数扩张成为
σ
\sigma
σ代数
σ
(
C
)
\sigma(\mathcal{C})
σ(C)上的测度
半环:
∅
∈
C
\emptyset \in \mathcal{C}
∅∈C,对有限交封闭
(
A
,
B
∈
C
⇒
A
∩
B
∈
C
)
(A,B\in \mathcal{C}\Rightarrow A\cap B\in \mathcal{C})
(A,B∈C⇒A∩B∈C),且
A
\
B
∈
C
Σ
f
A\backslash B \in \mathcal{C}_{\Sigma f}
A\B∈CΣf:即
∃
A
i
∈
C
,
i
=
1
,
.
.
.
,
n
,
s
.
t
.
A
\
B
=
∑
i
=
1
n
A
i
\exist A_i\in \mathcal{C},i=1,...,n,s.t.A\backslash B = \sum_{i=1}^nA_i
∃Ai∈C,i=1,...,n,s.t.A\B=∑i=1nAi
定义:
C
,
D
\mathcal{C,D}
C,D两个集类,分别有
μ
,
ν
\mu,\nu
μ,ν两个集函数,且
C
⊂
D
,
∀
A
∈
C
\mathcal{C}\subset\mathcal{D},\forall A\in \mathcal{C}
C⊂D,∀A∈C有
μ
(
A
)
=
ν
(
A
)
\mu(A)=\nu(A)
μ(A)=ν(A),则称
ν
\nu
ν为
μ
\mu
μ在
D
\mathcal{D}
D上的扩张(延拓),
μ
\mu
μ为
ν
\nu
ν在
C
\mathcal{C}
C上的限制,记为
μ
=
ν
∣
C
\mu= \nu|_\mathcal{C}
μ=ν∣C。
外测度
定义1.4.1(外测度)
P
(
Ω
)
\mathcal{P}(\Omega)
P(Ω)表示
Ω
\Omega
Ω所有子集构成的集类,设
μ
\mu
μ为
P
(
Ω
)
\mathcal{P}(\Omega)
P(Ω)上的一个非负集函数(满足
μ
(
∅
)
=
0
\mu(\empty)=0
μ(∅)=0)。若
μ
\mu
μ有单调性且满足次
σ
\sigma
σ可加性:
A
n
⊂
Ω
,
n
⩾
1
⇒
μ
(
⋃
n
A
n
)
⩽
∑
n
μ
(
A
n
)
A_n\subset \Omega,n\geqslant 1\Rightarrow \mu(\bigcup_n A_n)\leqslant\sum_{n}\mu(A_n)
An⊂Ω,n⩾1⇒μ(n⋃An)⩽n∑μ(An)
则称
μ
\mu
μ为
Ω
\Omega
Ω上一外测度。
测度的扩张
命题1.4.3(由
μ
\mu
μ引出的外测度
μ
∗
\mu^*
μ∗)
C
\mathcal{C}
C为
Ω
\Omega
Ω上的一个集类,
∅
∈
C
.
μ
为
C
\varnothing\in\mathcal{C}.\mu 为\mathcal{C}
∅∈C.μ为C上一半
σ
\sigma
σ可加非负集函数,
μ
(
∅
)
=
0.
对
∀
A
⊂
Ω
,
若
∃
{
A
n
}
∈
C
,
s
.
t
.
A
⊂
⋃
n
A
n
,
\mu(\varnothing)=0.对\forall A\subset\Omega,若\exist\{A_n\}\in\mathcal{C},s.t.A\subset\bigcup_nA_n,
μ(∅)=0.对∀A⊂Ω,若∃{An}∈C,s.t.A⊂⋃nAn,令
μ
∗
(
A
)
=
inf
{
∑
i
=
1
∞
μ
(
A
i
)
∣
A
n
∈
C
,
A
⊂
⋃
n
=
1
∞
A
n
}
\mu^*(A) = \inf\left\{\sum_{i=1}^\infty\mu(A_i)\left|A_n\in\mathcal{C},A\subset\bigcup_{n=1}^\infty A_n\right.\right\}
μ∗(A)=inf{i=1∑∞μ(Ai)∣∣∣∣∣An∈C,A⊂n=1⋃∞An}
约定
inf
∅
=
+
∞
.
\inf\varnothing=+\infty.
inf∅=+∞.则
μ
∗
\mu^*
μ∗为
Ω
\Omega
Ω上的外测度,且
μ
∗
\mu^*
μ∗限于
C
\mathcal{C}
C与
μ
\mu
μ一致。称
μ
∗
\mu^*
μ∗为由
μ
\mu
μ引出的外测度。
(即得到 ( P ( Ω ) , μ ∗ ) , P ( Ω ) (\mathcal{P}(\Omega),\mu^*),\mathcal{P}(\Omega) (P(Ω),μ∗),P(Ω)为一个 σ \sigma σ代数, μ ∗ \mu^* μ∗为一个外测度,扩张过度)
证:
-
∀
A
∈
C
,
μ
(
A
)
=
μ
∗
(
A
)
\forall A\in\mathcal{C},\mu(A) =\mu^*(A)
∀A∈C,μ(A)=μ∗(A)
∵ A = A ∪ ∅ ∪ ∅ ∪ . . . ∴ μ ∗ ( A ) ⩽ μ ( A ) + 0 + . . . ∵ μ ∗ ( A ) = ∑ i = 1 ∞ μ ( A i ) ⩾ μ ( A ) ( 半 σ 可 加 性 ) ∴ μ ( A ) = μ ∗ ( A ) \begin{aligned} &\because A=A\cup\varnothing\ \cup\varnothing\ \cup...\\ &\therefore\mu^*(A)\leqslant\mu(A)+0+...\\ &\because\mu^*(A)=\sum_{i=1}^\infty\mu(A_i)\geqslant\mu(A)\footnotesize{\textcolor{blue}{(半\sigma可加性)}}\\ &\therefore\mu(A) = \mu^*(A) \end{aligned} ∵A=A∪∅ ∪∅ ∪...∴μ∗(A)⩽μ(A)+0+...∵μ∗(A)=i=1∑∞μ(Ai)⩾μ(A)(半σ可加性)∴μ(A)=μ∗(A) - 单调性: A ⊂ B ⇒ μ ∗ ( A ) ⩽ μ ∗ ( B ) A\subset B\Rightarrow \mu^*(A)\leqslant\mu^*(B) A⊂B⇒μ∗(A)⩽μ∗(B)
- μ ∗ ( ∅ ) = μ ( ∅ ) = 0 \mu^*(\varnothing) = \mu(\varnothing) = 0 μ∗(∅)=μ(∅)=0
- 次
σ
\sigma
σ可加性:
若 μ ∗ ( ∑ n = 1 ∞ A n ) < ∞ , 则 μ ∗ ( A n ) < ∞ , ∀ n ⇒ ∀ ϵ > 0 , ∃ B n k , k ⩾ 1 , s . t . A n ⊂ ⋃ k = 1 ∞ B n k , 且 ∑ k = 1 ∞ μ ( B n k ) ⩽ μ ∗ ( A n ) + ϵ / 2 n ( inf 性 质 ) ⇒ ⋃ n = 1 ∞ A n ⊂ ⋃ n = 1 ∞ ⋃ k = 1 ∞ B n k , B n k ∈ C ⇒ μ ∗ ( ⋃ n = 1 ∞ A n ) ⩽ ∑ n = 1 ∞ μ ∗ ( ⋃ k = 1 ∞ B n k ) ( 半 σ 可 加 性 ) ⩽ ∑ n = 1 ∞ ∑ k = 1 ∞ μ ( B n k ) ( μ ∗ 定 义 ) ⩽ ∑ n = 1 ∞ ( μ ∗ ( A n ) + ϵ / 2 n ) = ∑ n = 1 ∞ μ ∗ ( A n ) + ϵ ( ∀ ϵ > 0 ) ∴ μ ∗ ( ⋃ n = 1 ∞ A n ) ⩽ ∑ n = 1 ∞ μ ∗ ( A n ) ⇒ ( 次 σ 可 加 性 ) \begin{aligned} & 若\mu^*(\sum_{n=1}^\infty A_n)<\infty,则\mu^*(A_n)<\infty,\forall n\\ & \Rightarrow \forall \epsilon >0,\exist B_{nk},k\geqslant 1,s.t.\ A_n\subset \bigcup^\infty_{k=1}B_{nk},且\sum^\infty_{k=1}\mu(B_{nk})\leqslant\mu^*(A_n)+\epsilon\footnotesize{\textcolor{blue}{/2^n(\inf性质)}}\\ & \Rightarrow\bigcup^\infty_{n=1}A_n\subset\bigcup^\infty_{n=1}\bigcup^\infty_{k=1}B_{nk},B_{nk}\in\mathcal{C}\\ & \Rightarrow\mu^*(\bigcup^\infty_{n=1}A_n)\leqslant\sum_{n=1}^\infty\mu^*(\bigcup^\infty_{k=1}B_{nk})\footnotesize{\textcolor{blue}{(半\sigma可加性)}}\\ &\qquad\qquad\qquad \leqslant\sum_{n=1}^\infty\sum^\infty_{k=1}\mu( B_{nk})\footnotesize{\textcolor{blue}{(\mu^*定义)}}\\ &\qquad\qquad\qquad \leqslant\sum_{n=1}^\infty\left(\mu^*(A_n) +\epsilon/2^n\right)\\ &\qquad\qquad\qquad =\sum_{n=1}^\infty \mu^*(A_n) +\epsilon \ \ (\forall \epsilon>0)\\ &\therefore\mu^*(\bigcup^\infty_{n=1}A_n)\leqslant\sum_{n=1}^\infty \mu^*(A_n) \Rightarrow(次\sigma可加性)\\ \end{aligned} 若μ∗(n=1∑∞An)<∞,则μ∗(An)<∞,∀n⇒∀ϵ>0,∃Bnk,k⩾1,s.t. An⊂k=1⋃∞Bnk,且k=1∑∞μ(Bnk)⩽μ∗(An)+ϵ/2n(inf性质)⇒n=1⋃∞An⊂n=1⋃∞k=1⋃∞Bnk,Bnk∈C⇒μ∗(n=1⋃∞An)⩽n=1∑∞μ∗(k=1⋃∞Bnk)(半σ可加性)⩽n=1∑∞k=1∑∞μ(Bnk)(μ∗定义)⩽n=1∑∞(μ∗(An)+ϵ/2n)=n=1∑∞μ∗(An)+ϵ (∀ϵ>0)∴μ∗(n=1⋃∞An)⩽n=1∑∞μ∗(An)⇒(次σ可加性)
由2-4可知 μ ∗ \mu^* μ∗满足外测度定义,由1可知 μ ∗ \mu^* μ∗限于 C \mathcal{C} C与 μ \mu μ一致。#
(
C
,
μ
)
→
扩
张
(
P
(
Ω
)
,
μ
∗
)
(\mathcal{C},\mu)\xrightarrow[扩张]{}(\mathcal{P}(\Omega),\mu^*)
(C,μ)扩张(P(Ω),μ∗)
设
μ
\mu
μ为
Ω
\Omega
Ω上的一个外测度。令
U
=
{
A
⊂
Ω
∣
∀
D
⊂
Ω
,
有
μ
(
D
)
=
μ
(
A
∩
D
)
+
μ
(
A
c
∩
D
)
}
\mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\mu(D)=\mu(A\cap D)+\mu(A^c\cap D)\}
U={A⊂Ω∣∀D⊂Ω,有μ(D)=μ(A∩D)+μ(Ac∩D)}
下考察
U
\mathcal{U}
U的性质:
由外测度的半
σ
\sigma
σ可加性知,
U
\mathcal{U}
U的性质等同于
U
1
\mathcal{U}_1
U1的性质
U
1
=
{
A
⊂
Ω
∣
∀
D
⊂
Ω
,
有
μ
(
D
)
⩾
μ
(
A
∩
D
)
+
μ
(
A
c
∩
D
)
}
\mathcal{U}_1=\{A\subset\Omega|\forall D\subset\Omega,有\mu(D)\geqslant\mu(A\cap D)+\mu(A^c\cap D)\}
U1={A⊂Ω∣∀D⊂Ω,有μ(D)⩾μ(A∩D)+μ(Ac∩D)}
- A = Ω A=\Omega A=Ω时,有 μ ( D ) = μ ( Ω ∩ D ) + μ ( ∅ ∩ D ) , ∀ D ⊂ Ω 恒 成 立 ⇒ Ω ∈ U ; \mu(D)=\mu(\Omega\cap D)+\mu(\empty\cap D),\forall D\subset\Omega恒成立\Rightarrow\Omega\in\mathcal{U}; μ(D)=μ(Ω∩D)+μ(∅∩D),∀D⊂Ω恒成立⇒Ω∈U;
- A ∈ U 1 A\in\mathcal{U}_1 A∈U1时, ∀ D ⊂ Ω , 有 μ ( D ) ⩾ μ ( A c ∩ D ) + μ ( ( A c ) c ∩ D ) \forall D\subset\Omega,有\mu(D)\geqslant\mu(A^c\cap D)+\mu((A^c)^c\cap D) ∀D⊂Ω,有μ(D)⩾μ(Ac∩D)+μ((Ac)c∩D),即 A c ∈ U 1 ; A^c\in\mathcal{U}_1; Ac∈U1;
- 取
A
,
B
∈
U
1
A,B\in\mathcal{U}_1
A,B∈U1,则
∀
D
⊂
Ω
,
μ
(
D
)
⩾
μ
(
A
∩
D
)
+
μ
(
A
c
∩
D
)
\forall D\subset\Omega,\mu(D)\geqslant\mu(A\cap D)+\mu(A^c\cap D)
∀D⊂Ω,μ(D)⩾μ(A∩D)+μ(Ac∩D)
⩾ μ ( A ∩ D ) + μ ( B ∩ A c ∩ D ) + μ ( B c ∩ A c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ \geqslant\mu(A\cap D)+\mu(B\cap A^c\cap D)+\mu(B^c\cap A^c\cap D) ⩾μ(A∩D)+μ(B∩Ac∩D)+μ(Bc∩Ac∩D)
⩾ μ ( ( A ∩ D ) ∪ ( B ∩ A c ∩ D ) ) + μ ( ( A ∪ B ) c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ \geqslant\mu((A\cap D)\cup (B\cap A^c\cap D))+\mu((A\cup B)^c\cap D) ⩾μ((A∩D)∪(B∩Ac∩D))+μ((A∪B)c∩D)
= μ ( D ∩ ( A ∪ ( B ∩ A c ) ) + μ ( ( A ∪ B ) c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ =\mu(D\cap(A\cup(B \cap A^c))+\mu((A\cup B)^c\cap D) =μ(D∩(A∪(B∩Ac))+μ((A∪B)c∩D)
= μ ( D ∩ ( A ∪ B ) ) + μ ( ( A ∪ B ) c ∩ D ) \quad\quad\quad \quad \quad \quad \quad \quad \quad \quad \quad\quad\quad \ =\mu(D\cap(A\cup B))+\mu((A\cup B)^c\cap D) =μ(D∩(A∪B))+μ((A∪B)c∩D)
⇒ A ∪ B ∈ U 1 \quad \quad \quad \quad \Rightarrow A\cup B\in \mathcal{U}_1 ⇒A∪B∈U1
由1-3可知 U 1 ( U ) \mathcal{U}_1(\mathcal{U}) U1(U)为一代数. - 取
A
n
∈
U
1
,
n
⩾
1
,
且
A
n
∩
A
m
=
∅
,
n
≠
m
:
A_n\in\mathcal{U}_1,n\geqslant1,且A_n\cap A_m=\empty,n\not=m:
An∈U1,n⩾1,且An∩Am=∅,n=m:(若对于可列不交并封闭,则对可列并也封闭)
μ ( D ) ⩾ μ ( A 1 ∩ D ) + μ ( A 1 c ∩ D ) ⩾ μ ( A 1 ∩ D ) + μ ( A 2 ∩ ( A 1 c ∩ D ) ) + μ ( A 2 c ∩ ( A 1 c ∩ D ) ) = μ ( A 1 ∩ D ) + μ ( A 2 ∩ D ) + μ ( ( A 1 ∪ A 2 ) c ∩ D ) . . . ⩾ ∑ k = 1 n μ ( A k ∩ D ) + μ ( ( ∑ k = 1 n A k ) c ∩ D ) 由 ( ∑ k = 1 ∞ A k ) c ⊂ ( ∑ k = 1 n A k ) c , 及 μ 单 调 性 知 μ ( ( ∑ k = 1 n A k ) c ∩ D ) ⩾ μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) ⩾ ∑ k = 1 n μ ( A k ∩ D ) + μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) 令 n → ∞ ⩾ ∑ k = 1 ∞ μ ( A k ∩ D ) + μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) μ 的 次 σ 可 加 性 ⩾ μ ( ( ∑ k ∞ A k ) ∩ D ) + μ ( ( ∑ k = 1 ∞ A k ) c ∩ D ) , ∀ D ⊂ Ω ⇒ ∑ k ∞ A k ∈ U 1 \begin{aligned} \mu(D)&\geqslant\mu(A_1\cap D)+\mu(A_1^c\cap D)\\ &\geqslant\mu(A_1\cap D)+\mu(A_2\cap(A_1^c\cap D))+\mu(A_2^c\cap(A_1^c\cap D))\\ &=\mu(A_1\cap D)+\mu(A_2\cap D)+\mu( (A_1\cup A_2)^c\cap D)\\ &...\\ &\geqslant\sum_{k=1}^n\mu(A_k\cap D)+\mu((\sum_{k=1}^nA_k)^c\cap D)\\ &\footnotesize{\textcolor{blue}{由(\sum_{k=1}^\infty A_k)^c\subset(\sum_{k=1}^n A_k)^c,及\mu单调性知\mu((\sum_{k=1}^nA_k)^c\cap D)\geqslant\mu((\sum_{k=1}^\infty A_k)^c\cap D)}}\\ &\geqslant\sum_{k=1}^n\mu(A_k\cap D)+\mu((\sum_{k=1}^\infty A_k)^c\cap D)\\ &\footnotesize{\textcolor{blue}{令n\to\infty}}\\ &\geqslant\sum_{k=1}^\infty\mu(A_k\cap D)+\mu((\sum_{k=1}^\infty A_k)^c\cap D)\\ &\footnotesize{\textcolor{blue}{\mu的次\sigma可加性}}\\ &\geqslant\mu((\sum_k^\infty A_k)\cap D)+\mu((\sum_{k=1}^\infty A_k)^c\cap D),\quad \forall D\subset \Omega\\ &\Rightarrow \sum_k^\infty A_k\in\mathcal{U}_1 \end{aligned} μ(D)⩾μ(A1∩D)+μ(A1c∩D)⩾μ(A1∩D)+μ(A2∩(A1c∩D))+μ(A2c∩(A1c∩D))=μ(A1∩D)+μ(A2∩D)+μ((A1∪A2)c∩D)...⩾k=1∑nμ(Ak∩D)+μ((k=1∑nAk)c∩D)由(k=1∑∞Ak)c⊂(k=1∑nAk)c,及μ单调性知μ((k=1∑nAk)c∩D)⩾μ((k=1∑∞Ak)c∩D)⩾k=1∑nμ(Ak∩D)+μ((k=1∑∞Ak)c∩D)令n→∞⩾k=1∑∞μ(Ak∩D)+μ((k=1∑∞Ak)c∩D)μ的次σ可加性⩾μ((k∑∞Ak)∩D)+μ((k=1∑∞Ak)c∩D),∀D⊂Ω⇒k∑∞Ak∈U1
特别的,取 D = ∑ k ∞ A k ⊂ Ω D=\sum_k^\infty A_k\subset\Omega D=∑k∞Ak⊂Ω,有 μ ( ∑ k ∞ A k ) ⩾ ∑ k ∞ μ ( A k ) ⩾ μ ( ∑ k ∞ A k ) \mu(\sum_k^\infty A_k)\geqslant\sum_k^\infty \mu(A_k)\geqslant\mu(\sum_k^\infty A_k) μ(∑k∞Ak)⩾∑k∞μ(Ak)⩾μ(∑k∞Ak),即
μ ( ∑ k ∞ A k ) = ∑ k ∞ μ ( A k ) \mu(\sum_k^\infty A_k)=\sum_k^\infty \mu(A_k) μ(k∑∞Ak)=k∑∞μ(Ak)
由4可知, μ \mu μ具有 σ \sigma σ可加性。
由1-4可知, U 1 ( U ) \mathcal{U}_1(\mathcal{U}) U1(U)为一 σ \sigma σ代数, μ \mu μ限于 U 1 ( U ) \mathcal{U}_1(\mathcal{U}) U1(U)为一测度。
整理得定理如下:
定理1.4.2
设
μ
\mu
μ为
Ω
\Omega
Ω上的一个外测度。令
U
=
{
A
⊂
Ω
∣
∀
D
⊂
Ω
,
有
μ
(
D
)
=
μ
(
A
∩
D
)
+
μ
(
A
c
∩
D
)
}
\mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\mu(D)=\mu(A\cap D)+\mu(A^c\cap D)\}
U={A⊂Ω∣∀D⊂Ω,有μ(D)=μ(A∩D)+μ(Ac∩D)}
则
U
\mathcal{U}
U为
Ω
\Omega
Ω上的一
σ
\sigma
σ代数,
μ
\mu
μ限于
U
\mathcal{U}
U为一测度。称
U
\mathcal{U}
U中的元素为
μ
\mu
μ可测集。
引理1.4.5
设
C
\mathcal{C}
C为
Ω
\Omega
Ω上的一集类,且
∅
∈
C
.
\varnothing\in\mathcal{C}.
∅∈C.设
μ
\mu
μ为
C
\mathcal{C}
C上的一半
σ
\sigma
σ可加非负集函数,且
μ
(
∅
)
=
0
,
μ
∗
\mu(\varnothing)=0,\mu^*
μ(∅)=0,μ∗为
μ
\mu
μ引出的外测度,则对于
∀
A
∈
Ω
\forall A\in \Omega
∀A∈Ω:
A
\qquad \qquad A
A为
μ
∗
\mu^*
μ∗可测集
⟺
∀
C
∈
C
\iff \forall C\in\mathcal{C}
⟺∀C∈C,有
μ
(
C
)
⩾
μ
∗
(
C
∩
A
)
+
μ
∗
(
C
∩
A
c
)
\mu(C)\geqslant\mu^*(C\cap A)+\mu^*(C\cap A^c)
μ(C)⩾μ∗(C∩A)+μ∗(C∩Ac)
即
U
=
{
A
⊂
Ω
∣
∀
D
⊂
Ω
,
有
μ
∗
(
D
)
=
μ
∗
(
A
∩
D
)
+
μ
∗
(
A
c
∩
D
)
}
⇕
U
1
=
{
A
⊂
Ω
∣
∀
D
⊂
Ω
,
有
μ
∗
(
D
)
⩾
μ
∗
(
A
∩
D
)
+
μ
∗
(
A
c
∩
D
)
}
⇕
U
2
=
{
A
⊂
Ω
∣
∀
C
∈
C
,
有
μ
(
C
)
(
=
μ
∗
(
C
)
)
⩾
μ
∗
(
A
∩
C
)
+
μ
∗
(
A
c
∩
C
)
}
\begin{aligned} &\mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\mu^*(D)=\mu^*(A\cap D)+\mu^*(A^c\cap D)\}\\ &\Updownarrow\\ &\mathcal{U}_1=\{A\subset\Omega|\forall D\subset\Omega,有\mu^*(D)\geqslant\mu^*(A\cap D)+\mu^*(A^c\cap D)\}\\ &\Updownarrow\\ &\mathcal{U}_2=\{A\subset\Omega|\forall C\in\mathcal{C},有\mu(C)(=\mu^*(C))\geqslant\mu^*(A\cap C)+\mu^*(A^c\cap C)\} \end{aligned}
U={A⊂Ω∣∀D⊂Ω,有μ∗(D)=μ∗(A∩D)+μ∗(Ac∩D)}⇕U1={A⊂Ω∣∀D⊂Ω,有μ∗(D)⩾μ∗(A∩D)+μ∗(Ac∩D)}⇕U2={A⊂Ω∣∀C∈C,有μ(C)(=μ∗(C))⩾μ∗(A∩C)+μ∗(Ac∩C)}
证:
⇒
\Rightarrow
⇒必要性:显然
⇐
\Leftarrow
⇐充分性:
设
A
∈
U
2
A\in\mathcal{U}_2
A∈U2,取
D
⊂
Ω
D\subset\Omega
D⊂Ω:
若
μ
∗
(
D
)
=
∞
\mu^*(D)=\infty
μ∗(D)=∞,则
μ
∗
(
D
)
⩾
μ
∗
(
A
∩
D
)
+
μ
∗
(
A
c
∩
D
)
\mu^*(D)\geqslant\mu^*(A\cap D)+\mu^*(A^c\cap D)
μ∗(D)⩾μ∗(A∩D)+μ∗(Ac∩D)恒成立;
若
μ
∗
(
D
)
<
∞
\mu^*(D)<\infty
μ∗(D)<∞,则
∀
ϵ
>
0
,
∃
A
n
∈
C
,
n
⩾
1
,
s
.
t
.
D
⊂
⋃
n
=
1
∞
A
n
\forall \epsilon>0,\exist{A_n}\in\mathcal{C},n\geqslant1,s.t.\ \ D\subset\bigcup_{n=1}^\infty A_n
∀ϵ>0,∃An∈C,n⩾1,s.t. D⊂⋃n=1∞An,且
μ
∗
(
D
)
+
ϵ
⩾
∑
n
=
1
∞
μ
∗
(
A
n
)
(
由
inf
/
μ
∗
定
义
)
⩾
∑
n
=
1
∞
(
μ
∗
(
A
n
∩
A
)
+
μ
∗
(
A
n
∩
A
c
)
)
(
U
2
性
质
)
⩾
μ
∗
(
⋃
n
=
1
∞
A
n
∩
A
)
+
μ
∗
(
⋃
n
=
1
∞
A
n
∩
A
c
)
(
外
测
度
的
次
σ
可
加
性
)
⩾
μ
∗
(
D
∩
A
)
+
μ
∗
(
D
∩
A
c
)
(
单
调
性
)
\begin{aligned} \mu^*(D)+\epsilon&\geqslant\sum_{n=1}^\infty\mu^*(A_n)\footnotesize{\textcolor{blue}{(由\inf/\mu^*定义)}}\\ &\geqslant\sum_{n=1}^\infty(\mu^*(A_n\cap A)+\mu^*(A_n\cap A^c))\footnotesize{\textcolor{blue}{(\mathcal{U}_2性质)}}\\ &\geqslant\mu^*(\bigcup_{n=1}^\infty A_n\cap A)+\mu^*(\bigcup_{n=1}^\infty A_n\cap A^c)\footnotesize{\textcolor{blue}{(外测度的次\sigma可加性)}}\\ &\geqslant\mu^*(D\cap A)+\mu^*(D\cap A^c) \footnotesize{\textcolor{blue}{(单调性)}} \end{aligned}
μ∗(D)+ϵ⩾n=1∑∞μ∗(An)(由inf/μ∗定义)⩾n=1∑∞(μ∗(An∩A)+μ∗(An∩Ac))(U2性质)⩾μ∗(n=1⋃∞An∩A)+μ∗(n=1⋃∞An∩Ac)(外测度的次σ可加性)⩾μ∗(D∩A)+μ∗(D∩Ac)(单调性)
由
ϵ
\epsilon
ϵ任意性知,
μ
∗
(
D
)
⩾
μ
∗
(
A
∩
D
)
+
μ
∗
(
A
c
∩
D
)
\mu^*(D)\geqslant\mu^*(A\cap D)+\mu^*(A^c\cap D)
μ∗(D)⩾μ∗(A∩D)+μ∗(Ac∩D)成立。即
A
∈
U
1
,
A
A\in\mathcal{U}_1,A
A∈U1,A为
μ
∗
\mu^*
μ∗可测集。
可知在
U
\mathcal{U}
U上考虑
μ
∗
\mu^*
μ∗等价于在
C
\mathcal{C}
C上考虑
μ
;
(
C
,
μ
)
→
扩
张
(
U
,
μ
∗
∣
U
)
→
扩
张
(
P
(
Ω
)
,
μ
∗
)
\mu ;\ \ \ (\mathcal{C},\mu)\xrightarrow[扩张]{}(\mathcal{U},\mu^*|_\mathcal{U})\xrightarrow[扩张]{}(\mathcal{P}(\Omega),\mu^*)
μ; (C,μ)扩张(U,μ∗∣U)扩张(P(Ω),μ∗)
命题1.4.4
设
μ
\mu
μ为半环
C
\mathcal{C}
C上的一非负集函数(
μ
(
∅
)
=
0
\mu(\varnothing)=0
μ(∅)=0),则
μ
\mu
μ是证明
σ
\sigma
σ可加的
⟺
μ
\iff\mu
⟺μ为有限可加的 + 半
σ
\sigma
σ可加的。
证:
定理
半环
C
\mathcal{C}
C,
μ
\mu
μ为
C
\mathcal{C}
C上一
σ
\sigma
σ可加非负集函数,则
μ
\mu
μ可以扩张成
σ
(
C
)
\sigma(\mathcal{C})
σ(C)上测度,
μ
∗
(
A
)
=
inf
{
∑
i
=
1
∞
μ
(
A
i
)
∣
A
n
∈
C
,
A
⊂
⋃
n
=
1
∞
A
n
}
\mu^*(A) = \inf\left\{\sum_{i=1}^\infty\mu(A_i)\left|A_n\in\mathcal{C},A\subset\bigcup_{n=1}^\infty A_n\right.\right\}
μ∗(A)=inf{i=1∑∞μ(Ai)∣∣∣∣∣An∈C,A⊂n=1⋃∞An}
对应
μ
∗
\mu^*
μ∗可测集
U
\mathcal{U}
U是
σ
\sigma
σ代数,测度为
μ
∗
∣
U
\mu^*|_\mathcal{U}
μ∗∣U。
引理1.4.6
设
C
\mathcal{C}
C为
Ω
\Omega
Ω上的一
π
\pi
π类,
μ
1
,
μ
2
\mu_1,\mu_2
μ1,μ2为
σ
(
C
)
\sigma(\mathcal{C})
σ(C)上的两个有限测度
(
μ
(
Ω
)
<
∞
)
\footnotesize{\textcolor{blue}{(\mu(\Omega)<\infty)}}
(μ(Ω)<∞)。若
Ω
∈
C
\Omega\in\mathcal{C}
Ω∈C,且
μ
1
∣
C
=
μ
2
∣
C
\mu_1|_\mathcal{C}=\mu_2|_\mathcal{C}
μ1∣C=μ2∣C,则
(
σ
(
C
)
,
μ
1
)
=
(
σ
(
C
)
,
μ
2
)
(\sigma(\mathcal{C}),\mu_1)=(\sigma(\mathcal{C}),\mu_2)
(σ(C),μ1)=(σ(C),μ2)
证:
∀
A
∈
C
\forall A\in\mathcal{C}
∀A∈C,有
μ
1
(
A
)
=
μ
2
(
A
)
:
\mu_1(A)=\mu_2(A):
μ1(A)=μ2(A):
令
G
=
{
A
∈
σ
(
C
)
∣
μ
1
(
A
)
=
μ
2
(
A
)
}
\mathcal{G}=\{A\in\sigma(\mathcal{C})|\mu_1(A)=\mu_2(A)\}
G={A∈σ(C)∣μ1(A)=μ2(A)};若
G
\mathcal{G}
G为
λ
\lambda
λ类,则
σ
(
C
)
⊆
G
⇒
σ
(
C
)
=
G
.
\sigma(\mathcal{C})\subseteq\mathcal{G}\Rightarrow\sigma(\mathcal{C})=\mathcal{G}.
σ(C)⊆G⇒σ(C)=G.
可证
G
\mathcal{G}
G为
λ
\lambda
λ类:
①
Ω
∈
G
\Omega\in\mathcal{G}
Ω∈G;
②
A
,
B
∈
G
,
B
⊂
A
:
μ
1
(
A
\
B
)
=
μ
1
(
A
)
−
μ
1
(
B
)
=
μ
2
(
A
)
−
μ
2
(
B
)
=
μ
2
(
A
\
B
)
⇒
A
\
B
∈
G
A,B\in\mathcal{G},B\subset A:\mu_1(A\backslash B)=\mu_1(A)-\mu_1(B)=\mu_2(A)-\mu_2(B)=\mu_2(A\backslash B)\Rightarrow A\backslash B\in\mathcal{G}
A,B∈G,B⊂A:μ1(A\B)=μ1(A)−μ1(B)=μ2(A)−μ2(B)=μ2(A\B)⇒A\B∈G;
③取
A
n
∈
G
,
A
n
↑
,
则
μ
1
(
A
n
)
=
μ
2
(
A
n
)
:
A_n\in\mathcal{G},A_n\uparrow ,则\mu_1(A_n)=\mu_2(A_n):
An∈G,An↑,则μ1(An)=μ2(An):
μ
1
(
⋃
n
A
n
)
=
lim
n
→
∞
μ
1
(
A
n
)
=
lim
n
→
∞
μ
2
(
A
n
)
=
μ
2
(
⋃
n
A
n
)
\mu_1(\bigcup_n A_n)=\lim_{n\to\infty}\mu_1(A_n)=\lim_{n\to\infty}\mu_2(A_n)=\mu_2(\bigcup_n A_n)
μ1(⋃nAn)=limn→∞μ1(An)=limn→∞μ2(An)=μ2(⋃nAn)
⇒
⋃
n
A
n
∈
G
\Rightarrow \bigcup_n A_n\in\mathcal{G}\quad
⇒⋃nAn∈G #
即
定理1.4.7
半环
C
\mathcal{C}
C,
μ
\mu
μ为
C
\mathcal{C}
C上一
σ
\sigma
σ可加非负集函数,则
μ
\mu
μ可以扩张成
σ
(
C
)
\sigma(\mathcal{C})
σ(C)上测度。若进一步
μ
\mu
μ在
C
\mathcal{C}
C上为
σ
\sigma
σ有限,且
Ω
∈
C
σ
\Omega\in\mathcal{C}_\sigma
Ω∈Cσ,则这一扩张唯一,且扩张所得的测度在
σ
(
C
)
\sigma(\mathcal{C})
σ(C)上也为
σ
\sigma
σ有限。
定义1.4.9
取
(
Ω
,
C
)
(\Omega,\mathcal{C})
(Ω,C)半环,
σ
\sigma
σ可加测度
μ
\mu
μ,
设
(
Ω
,
F
,
μ
)
(\Omega,\mathcal{F},\mu)
(Ω,F,μ)为一测度空间。令
N
=
{
N
⊂
Ω
∣
∃
A
∈
F
,
μ
(
A
)
=
0
,
s
.
t
.
N
⊂
A
}
\mathcal{N} = \{N\subset\Omega|\exist A\in\mathcal{F},\mu(A)=0,\ s.t. \ N\subset A\}
N={N⊂Ω∣∃A∈F,μ(A)=0, s.t. N⊂A}
称
N
\mathcal{N}
N为零测集。对
(
Ω
,
F
,
μ
)
(\Omega,\mathcal{F},\mu)
(Ω,F,μ)测度空间:定义
F
ˉ
=
F
∪
N
\bar\mathcal{F}=\mathcal{F}\cup \mathcal{N}
Fˉ=F∪N,则
F
ˉ
\bar\mathcal{F}
Fˉ为
σ
\sigma
σ代数。
Lesson 6:Chp2 可测映射
回顾总结
取半环 ( Ω , C ) (\Omega,\mathcal{C}) (Ω,C), σ \sigma σ可加的测度 μ ⇒ \mu\Rightarrow μ⇒ 测度空间 ( Ω , σ ( C ) , ν ) (\Omega,\sigma(\mathcal{C}),\nu) (Ω,σ(C),ν)
①:
∀
A
⊂
Ω
,
μ
∗
(
A
)
=
inf
{
∑
i
=
1
∞
μ
(
A
i
)
∣
A
n
∈
C
,
A
⊂
⋃
n
=
1
∞
A
n
}
\forall A\subset\Omega,\mu^*(A) = \inf\left\{\sum_{i=1}^\infty\mu(A_i)\left|A_n\in\mathcal{C},A\subset\bigcup_{n=1}^\infty A_n\right.\right\}
∀A⊂Ω,μ∗(A)=inf{∑i=1∞μ(Ai)∣An∈C,A⊂⋃n=1∞An}
得到
P
(
Ω
)
\mathcal{P}(\Omega)
P(Ω)+外测度(次
σ
\sigma
σ可加)
(
P
(
Ω
)
,
μ
∗
)
(\mathcal{P}(\Omega),\mu^*)
(P(Ω),μ∗)
②:由分析可知,取
U
ˉ
=
{
A
⊂
Ω
∣
∀
D
⊂
Ω
,
有
μ
ˉ
(
D
)
=
μ
ˉ
(
A
∩
D
)
+
μ
ˉ
(
A
c
∩
D
)
}
\ \bar\mathcal{U}=\{A\subset\Omega|\forall D\subset\Omega,有\bar\mu(D)=\bar\mu(A\cap D)+\bar\mu(A^c\cap D)\}
Uˉ={A⊂Ω∣∀D⊂Ω,有μˉ(D)=μˉ(A∩D)+μˉ(Ac∩D)}(其中
μ
ˉ
\bar\mu
μˉ为任意外测度)
则
U
ˉ
\bar\mathcal{U}
Uˉ 为
σ
\sigma
σ代数,且
μ
ˉ
∣
U
ˉ
\bar\mu|_{\bar\mathcal{U}}
μˉ∣Uˉ为其上一个测度
③:当外测度
μ
ˉ
\bar\mu
μˉ为
μ
\mu
μ引出的外测度
μ
∗
\mu^*
μ∗时,取
U
∗
=
{
A
⊂
Ω
∣
∀
D
∈
C
,
有
μ
∗
(
D
)
=
μ
∗
(
A
∩
D
)
+
μ
∗
(
A
c
∩
D
)
}
\ \mathcal{U}^*=\{A\subset\Omega|\forall D\in\mathcal{C},有\mu^*(D)=\mu^*(A\cap D)+\mu^*(A^c\cap D)\}
U∗={A⊂Ω∣∀D∈C,有μ∗(D)=μ∗(A∩D)+μ∗(Ac∩D)}
则
U
∗
\mathcal{U}^*
U∗ 为
σ
\sigma
σ代数,且
μ
∗
∣
U
∗
\mu^*|_{\mathcal{U}^*}
μ∗∣U∗为其上一个测度:
(
U
∗
,
μ
∗
∣
U
∗
)
(\mathcal{U^*},\mu^*|_\mathcal{U^*})
(U∗,μ∗∣U∗)
只需说明
C
⊂
U
∗
,
ν
=
μ
∗
∣
σ
(
C
)
\mathcal{C}\subset\mathcal{U}^*,\nu=\mu^*|_{\sigma(\mathcal{C})}
C⊂U∗,ν=μ∗∣σ(C)
④:考察唯一性
由单调类定理可证,即引理1.4.6
2.1 定义及基本性质
相关定义
可测空间映射:
(
Ω
,
F
)
↦
f
(
E
,
E
)
(\Omega,\mathcal{F})\xmapsto{f}(E,\mathcal{E})
(Ω,F)f
(E,E)
B
∈
E
,
f
−
1
(
B
)
=
{
ω
∈
Ω
∣
f
(
ω
)
∈
B
}
B\in\mathcal{E},f^{-1}(B) = \{\omega\in\Omega|f(\omega)\in B\}
B∈E,f−1(B)={ω∈Ω∣f(ω)∈B}是
Ω
\Omega
Ω上的集合(
E
\mathcal{E}
E中集合
B
B
B的原象)
f
−
1
(
E
)
=
{
f
−
1
(
B
)
∣
B
∈
E
}
\qquad \quad f^{-1}(\mathcal{E}) = \{f^{-1}(B)|B\in\mathcal{E}\}
f−1(E)={f−1(B)∣B∈E}是
Ω
\Omega
Ω上的集类
性质:
-
f
−
1
(
∅
)
=
∅
f^{-1}(\varnothing)=\varnothing
f−1(∅)=∅
? -
f
−
1
(
E
)
=
Ω
f^{-1}(E)=\Omega
f−1(E)=Ω
? - f − 1 ( B c ) = ( f − 1 ( B ) ) c f^{-1}(B^c)=(f^{-1}(B))^c f−1(Bc)=(f−1(B))c
- f − 1 ( ⋃ i ∈ I B i ) = ⋃ i ∈ I f − 1 ( B i ) f^{-1}(\bigcup_{i\in I}B_i)=\bigcup_{i\in I}f^{-1}(B_i) f−1(⋃i∈IBi)=⋃i∈If−1(Bi)
-
f
−
1
(
⋂
i
∈
I
B
i
)
=
⋂
i
∈
I
f
−
1
(
B
i
)
f^{-1}(\bigcap_{i\in I}B_i)=\bigcap_{i\in I}f^{-1}(B_i)
f−1(⋂i∈IBi)=⋂i∈If−1(Bi)
⇒ f − 1 ( E ) 是 Ω 上 σ 代 数 \color{blue}\Rightarrow f^{-1}(\mathcal{E})是\Omega上\sigma代数 ⇒f−1(E)是Ω上σ代数 - f − 1 ( A \ B ) = f − 1 ( A ) \ f − 1 ( B ) f^{-1}(A\backslash B)=f^{-1}(A)\backslash f^{-1}(B) f−1(A\B)=f−1(A)\f−1(B)
定义2.1.1 为何这样定义?
设
(
Ω
,
F
)
,
(
E
,
E
)
(\Omega,\mathcal{F}),(E,\mathcal{E})
(Ω,F),(E,E)为两个可测空间,
f
f
f为
Ω
\Omega
Ω到
E
E
E中的映射。若对一切
A
∈
Ω
A\in\Omega
A∈Ω,有
f
−
1
(
A
)
∈
F
f^{-1}(A)\in\mathcal{F}
f−1(A)∈F,则称
f
f
f为
F
\mathcal{F}
F可测映射。
即:
f
f
f为
F
\mathcal{F}
F可测映射
⟺
f
−
1
(
E
)
⊂
F
\iff f^{-1}(\mathcal{E})\subset\mathcal{F}
⟺f−1(E)⊂F
可测映射刻画:
取集类
C
\mathcal{C}
C:
(
Ω
,
F
)
↦
f
(
E
,
E
=
σ
E
(
C
)
)
(\Omega,\mathcal{F})\xmapsto{f}(E,\mathcal{E}=\sigma_E(\mathcal{C}))
(Ω,F)f
(E,E=σE(C))
f
为
F
可
测
映
射
⟺
f
−
1
(
σ
E
(
C
)
)
⊂
F
⟺
f
−
1
(
C
)
⊂
F
\begin{aligned} f为\mathcal{F}可测映射&\iff f^{-1}(\sigma_E(\mathcal{C}))\subset\mathcal{F}\\ &\iff f^{-1}(\mathcal{C})\subset\mathcal{F} \end{aligned}
f为F可测映射⟺f−1(σE(C))⊂F⟺f−1(C)⊂F
⇒
f
−
1
(
σ
E
(
C
)
)
=
σ
Ω
(
f
−
1
(
C
)
)
\Rightarrow f^{-1}(\sigma_E(\mathcal{C}))=\sigma_\Omega(f^{-1}(\mathcal{C}))
⇒f−1(σE(C))=σΩ(f−1(C))
Lesson 7:Chp2 可测映射
下研究可测函数的构造