描述
今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。我们约定:每个人从盒子中取出的球的数目必须是:1,3,7或者8个。轮到某一方取球时不能弃权!A先取球,然后双方交替取球,直到取完。被迫拿到最后一个球的一方为负方(输方)请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?
输入
先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。
输出
输出n行,表示A的输赢情况(输为0,赢为1)。
输入样例 1
4
1
2
10
18
输出样例 1
0
1
1
0
#include<cstdio>
using namespace std;
int a[10001]={0};
int main()
{
for(int i=1;i<=10000;i++)
{
if(a[i]==0)
{
a[i+1]=1;
a[i+3]=1;
a[i+7]=1;
a[i+8]=1;
}
}
int n,q;
scanf("%d",&n);
while(n--)
{
scanf("%d",&q);
printf("%d\n",a[q]);
}
}
题目知A先取 所以当有一个只有小球的时候,A必输。那我们可以反过来想,当B拿过以后。剩下一个球的时候A是输,剩下三个或者7个或者8个也是A输。也就是说让A赢一局之后便会有连锁的四个个输局。之后的1 3 7 8都是输局。同理 假设一个球的时候 A是输的 那么三个连锁的 2 4 8 9都是赢。当然,这个连锁是有条件的。条件就是A输与赢。因此 我们就可以写成递推的形式,依次求出所有数据中AB的输赢情况。这个题目如果正向考虑,可能会比较惨。如果逆向考虑会更好。