【数据结构二叉树】补充:C实现二叉树的层次遍历 数据结构中对于二叉树的遍历方式,主要有4种,除了层次遍历,还有先序遍历、中序遍历和后序遍历。关于先序遍历、中序遍历和后序遍历的算法实现过程,可以参考二叉树的先序遍历、中序遍历和后序遍历欢迎大家一起留言讨论~
【数据结构二叉树】C非递归算法实现二叉树的先序、中序、后序遍历 指按某条搜索路径巡访二叉树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。(采用非递归算法实现对二叉树的后序遍历,会稍微复杂一些,本算法借用了两个栈结构)除了层次遍历外,二叉树有三个重要的遍历方法:先序遍历、中序遍历、后序遍历。欢迎大家一起来交流~
【eval()函数的使用】 eval() 是 Python 的一个内置函数,它的主要用法是将字符串作为 Python 代码执行。在使用 eval() 时,一定要注意安全性,避免执行用户提供的不可信的代码。在这个例子中,虽然全局的 x 变量为 1,但在函数 test_eval 中,我们创建了一个新的局部变量 x,并且给它赋值为 5。当我们调用 eval() 并传入一个局部变量字典时,eval() 使用这个局部变量,而不是全局变量。在这个例子中,字符串 ‘x + 1’ 被解析并执行,就像它是一个 Python 表达式一样。
python语法:list与array的区别 在python数据类型中,list和array都可以根据索引来取其中的元素,但是list可以用append或者+来新增元素或者添加数组,而array不行。(2)列表list是一系列按特定顺序排列的元素组成,可以将任何数据放入列表,且其中元素之间没有任何关系。此外,list中的数据类不必相同的,而array则是由numpy封装,存放的元素都是相同的数据类型。list中的数据类不必相同的,即每个元素可以是不同的数据类型;array则是由numpy封装,存放的元素都是相同的数据类型。...
python语法:类中object的用法 假如定义两个类,一个带object,一个不带object,会不会有差别呢?然而结果却是一摸一样的:因为我使用的是python3版本,已经默认帮你加载了object了(即使没有写上object)。所以python3版本加不加object没有区别。如果是python2版本呢?代码:结果如下:Cat类很明显能够看出区别,不继承object对象,只拥有了_ doc _, _ module _和自己定义的name变量, 也就是说这个类的命名空间只有三个对象可以操作.Dog类继承了object对象,拥有了
【jupyter notebook使用说明介绍小记】 绿色:编辑模式蓝色:命令模式shift+enter:运行当前代码块,且光标进入下面代码块ctrl+enter:运行当前代码块,光标停留在当前代码块dd:删除当前代码块b:在下方添加一个空代码块a:在上方添加一个空代码块m:将编程语言代码变成Markdown代码块y:将Markdown代码块变成编程语言代码块r:将单元格切换至让raw状态https://www.python.org/...
【边缘计算】移动边缘计算中延迟和能量约束任务卸载的最优拍卖 论文:Optimal auction for delay and energy constrained task offloading in mobile edge computing摘要:移动边缘计算已经成为一种很有前途的范例,以补充移动设备的计算和能源资源。在这种计算范式中,移动设备将其计算任务卸载到附近的边缘服务器,这可能会降低它们的能量消耗和任务完成延迟。作为处理计算任务的交换,边缘服务器希望获得一笔支付其运营成本并使其盈利的付款。不幸的是,现有的工作要么忽略向边缘服务器的支付,要么忽略任务处理延
综述:物联网的联邦学习 来源:Federated Learning for Internet of Things : A Comprehensive Survey传统上,人工智能技术需要集中的数据收集和处理,但由于现代物联网网络的高可扩展性和日益增长的数据隐私问题,这在现实应用场景中可能不可行。联邦学习(FL)已经成为一种分布式协同人工智能方法,通过允许在分布式物联网设备上进行人工智能训练而不需要数据共享,它可以使许多智能物联网应用成为可能。传统上,人工智能功能被放置在云服务器或数据中心,用于的数据学习和建模,鉴于物联网数据的
【联邦学习】最优物联网联邦学习的多准则客户端选择模型 论文来源:FedMCCS: Multi Criteria Client Selection Model for Optimal IoT Federated Learning联邦学习机制:由1个参数服务器和多个边缘节点组成,参数服务器负责收集各参加节点上传的梯度,根据优化算法对模型各参数进行更新,维护全局参数;参与节点独立地对本地拥有的敏感数据集进行学习。每轮学习结束后,节点将计算的梯度数据上传至参数服务器,由服务器进行汇总更新全局参数。然后节点从参数服务器下载更新后的参数,覆盖本地模型参数,进行下一轮迭代
python编程安装sklearn 1、首先安装sklearn需要三个依赖库,需要分别进行安装2、查看是否已经安装了numpy、matplotlib、scipy这些库conda list下载安装还需要的依赖库3、用pip命令安装这些库pip install numpypip install matplotlibpip install scipy4、用pip 命令安装sklearn库pip install sklearn5、查看是否安装成功已经成功安装了sklearn 库。...
机器学习中一些经典数据集的下载 人工智能的时代,数据就是石油;我们在做一些机器学习实验的时候,经常会用到一些比较经典的数据集,例如:lris, Adult, Wine, Heart Disease等等,但是我发现CSDN上有人把免费的数据集上传了,然而下载却还需要付费,因此推荐直接在原网址上进行下载;UCI数据集库推荐大家自行下载,直接进行下载。网址链接:https://archive.ics.uci.edu/ml/index.php网址链接:https://archive.ics.uci.edu/ml/datasets.php
联邦学习与分布式学习的区别 联邦学习问题:我们的目标是在设备生成的数据被本地存储和处理的约束下学习这个模型,而只有中间更新周期性与中央服务器进行通信。一、联邦学习与分布式学习的区别1.用户对自己的设备和数据有绝对的控制权,可以随时让自己的设备停止参与计算与通信;2.worked node是不稳定的设备;3.通信代价远大于计算代价;4.联邦学习的数据不是独立同分布的;5.联邦学习的节点负载不平衡。二、联邦学习研究点1.算法的效率;2.保护隐私;3.鲁棒性(拜占庭将军问题)。...
边缘智能小结 一、边缘智能的主要研究方向模型优化任务资源分配边缘联邦智能云边协同1.模型优化1.1、结构性优化模型剪枝、模型量化、低秩因子分解1.2、非结构性优化知识蒸馏、紧凑网络设计1.3、协同性优化模型分割2.任务资源分配2.1、计算卸载基于能耗的MEC计算卸载、基于时延的MEC计算卸载2.2、缓存资源分配MEC缓存管理、MEC排队模型、MEC负载共享和平衡2.3、资源调度MEC任务分配/卸载、MEC资源联合优化2.4、移动性管理MEC计算分流和接入点选择、MEC任务部署、
pycharm快捷键及一些常用设置 1、编辑(Editing)Ctrl + Space 基本的代码完成(类、方法、属性)Ctrl + Alt + Space 快速导入任意类Ctrl + Shift + Enter 语句完成Ctrl + P 参数信息(在方法中调用参数)Ctrl + Q 快速查看文档Shift + F1 外部文档Ctrl + 鼠标 简介Ctrl + F1 显示错误描述或警告信息Alt + Insert 自动生成代码Ctrl + O 重新方法Ctrl + Alt + T 选中Ctrl + / 行注释Ctr