三维地形场景智能生成方法研究 毕业设计论文

本文探讨了如何利用深度学习,特别是条件生成对抗网络(CGAN)的pix2pix变体,实现用户可控的高真实感虚拟地形生成。通过构建多样风格的地形特征数据集和设计针对虚拟地形生成的网络模型,研究了不同地形特征对生成效果的影响。实验结果表明,这种方法有助于快速构建大规模场景并灵活修改局部地形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

虚拟地形作为三维场景中重要组成部分,在 CG 影视、军事模拟、开放世界游戏、虚拟现实以及三维仿真等领域中被广泛应用。地形建模任务中创作者往往难以高效的复现出真实地形的复杂性与多样性。如何高效通过用户控制创作出具有真实性的虚拟地形一直是计算机图形学领域中的一大挑战。随着深度学习的飞速发展,已经在风格迁移、人脸识别等诸多领域展现出传统算法难以企及的效果。如何基于深度学习技术快速有效地生成用户可控并且具有高度真实感的地形,成为新的研究方向。

在 GAN 模型的各种分支中,条件生成对抗网络提供了对生成结果的约束,增加了对生成图像的控制。pix2pix 是在 CGAN 基础上提出的一种通用的图像转换网络,本文在 pix2pix 网络基础了做出细微调整,设计了适合虚拟地形生成的网络, 实现了由地形特征(山脊线、山谷线等)图生成多风格具有真实感的虚拟地形。该地形生成网络只需根据用户提供的山脊线、山谷线和正负地形等地形特征的描述, 就可以自动生成符合特征约束的虚拟地形。本文的主要工作和贡献如下:

(1)构建了样本数量较大且包含四种风格(平原、丘陵、高原、山地)地形与地形特征组合数据集。

(2)基于 pix2pix 网络架构,设计了适合虚拟地形生成任务的地形生成模型。

(3)设计了具体实验,比较了不同地形特征组合对虚拟地形生成的影响,以及相同地形特征约束下不同类型地形生成效果差异,

(4)将本文中的虚拟地形生成方法进行了实际的应用分析。结果表明本文虚拟地形生成方法不仅能够帮助创作者快速搭建大型地形场景,还能够通过对地形特征图的修改实现局部地形的快速修改。

Abstract

As an important part of 3D scene, virtual terrain is widely used in CG films, military simulation, open world games, virtual reality and simulation. In the task of terrain modeling, it is often difficult for creators to efficiently reproduce the complexity and diversity of real terrain. How to efficiently create realistic virtual terrain through little user control has always been a major challenge in the field of computer graphics. With the rapid development of deep learning, it has shown the effect that traditional algorithms are difficult to achieve in many fields, such as style transfer, face recognition and so on. How to generate user controllable and highly realistic terrain quickly and effectively based on deep learning technology has become a new research direction.

In various branches of GAN model, the conditional Generative Adversarial Network provides constraints on the generation results and increases the control of the generated image. Pix2pix is a Generative Adversarial Network based on CGAN. This paper makes minor adjustments on the basis of pix2pix network, designs a network suitable for virtual terrain generation, and realizes the generation of multi style and realistic virtual terrain from terrain feature (ridge line, valley line, etc.). The terrain generation network can automatically generate virtual terrain conforming to feature constraints only according to the description of terrain features such as ridge line, valley line and positive and negative terrain provided by users. The main work and contributions of this paper are as follows:

(1) The combined data set of terrain and terrain features with a large number of samples and four styles (plain, hill, plateau and mountain) is constructed.

(2) Based on pix2pix network architecture, a terrain generation model suitable for virtual terrain generation task is designed.

(3) Specific experiments are designed to compare the effects of different terrain feature combinations on virtual terrain generation, as well as the differences of different types of terrain generation effects under the same terrain feature constraints,

(4) The virtual terrain generation method in this paper is analyzed in practical application. The results show that the virtual terrain generation method in this paper can not only help the creator to quickly build large-scale terrain scenes, but also realize the rapid modification of local terrain through the modification of terrain feature map.

目 录

第一章 绪论 ................................................ 1

1.1 选题背景和意义 1

1.2 研究现状 2

1.2.1 程序化地形生成方法 2

1.2.2 仿真模拟地形生成方法 3

1.2.3 交互编辑地形生成方法 3

1.2.4 基于深度学习的地形生成方法 3

1.3 研究内容概述 4

1.4 论文章节安排 5

第二章 相关技术基础概述 .................................... 6

2.1 地形表示方法 6

2.2 地形特征要素 6

2.3 深度学习 7

2.2.1 卷积神经网络 7

2.2.2 生成对抗网络 8

第三章 地形生成模型 ....................................... 12

3.1 地形生成模型网络结构 12

3.1.1 模型概述 12

3.1.2 生成器 12

3.1.3 判别器 14

3.1.5 损失函数 15

3.2 训练方法 15

第四章 数据获取与处理 ..................................... 17

4.1 研究区域概况 17

4.2 数据获取与处理 18

4.2.1 数据收集 18

4.2.2 数据预处理 18

4.2.3 地形特征提取 19

4.3 本章小结 22

第五章 实验过程与结果分析 ................................. 23

5.1 实验环境 23

5.1.1 软件及硬件配置 23

5.1.2 深度学习框架 23

5.2 实验设计与步骤 24

5.3 训练过程 24

5.4 实验结果对比分析 28

5.4.1 地形生成实验结果与分析 28

5.4.2 实验结果评判准则 30

5.5 地形渲染与应用分析 32

5.5.1 多类型地形渲染 32

5.5.2 局部地形修改 35

第六章 总结与展望 ......................................... 38

6.1 总结 38

6.2 展望 38

参考文献 .................................................. 40

致谢 ...................................................... 44

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值