语音信号中的情感信息处理研究 毕业论文+任务书+开题报告+文献综述+外文翻译及原文+MATLAB代码

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:小马
💕💕个人简介:混迹在java圈十年有余,擅长Java、微信小程序、Python、Android等,大家有这一块的问题可以一起交流!
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

语音信号中情感信息处理研究

【摘要】随着互联网的发展,语音交互技术,包括自动语音识别、合成语音和自然语言处理,开始对商业和个人电脑的使用产生重大影响。语音信号和面部表情一样,可以传达情感信息。言语情感的研究对智能人机交互具有重要的现实意义。本文介绍了语音情感识别的研究背景和相关技术,重点介绍了国内外语音情感处理的现状和发展方向。本文对语音情感识别的分析过程和设计思想进行了深入的探讨。本文完成语音信号预处理、汉明窗、MFCC、ZCPA等操作提取情感特征参数,并利用神经网络构成分类器来做情感的识别。进行很多的实验,提取出各种情绪特征参数,这些参数对不同的情绪有不同的贡献。然后利用提取的特征参数构造分类器,该分类器采用神经网络模型。最后,验证了模型的有效性。

·

Research on emotion information processing

in speech signal

·

【Abstract】With the development of the Internet, voice interaction technologies, including automatic speech recognition, synthetic speech and natural language processing, are beginning to have a significant impact on the use of business and personal computers. Voice signals, like facial expressions, can convey emotional information.The study of speech emotion has important practical significance for intelligent human-computer interaction.This paper introduces the research background and related technologies of speech emotion recognition, and focuses on the current situation and development direction of speech emotion processing at home and abroad.In this paper, the analysis process and design idea of speech emotion recognition are deeply discussed.In this paper, the speech signal preprocessing, hamming window, MFCC, ZCPA and other operations are completed to extract emotional characteristic parameters, and the neural network is used to constitute a classifier to realize emotion recognition.A large number of experiments were conducted to summarize and analyze the various emotion characteristic parameters extracted, which have different contributions to different emotions.Then the extracted feature parameters are used to construct the classifier, which adopts the deep neural network model.Finally, the validity of the model is verified.

目 录

1 绪 论

1.1 语音情感识别概述

1.1.1引言

1.1.2语音识别的背景

1.1.3语音情感识别中面临的问题和困难

1.2论文研究的主要内容以及章节安排

2 语音情感识别原理和技术

2.1综述

2.2 预处理

2.2.1语音情感信号的预加重处理

2.2.2语音信号加窗分帧处理

2.2.3 短时平均能量分析

2.2.4 短时平均过零率

2.2.5 语音情感信号的端点检测

2.3语音情感特征的提取

2.3.1 Mel频率倒谱系数(MFCC)

2.3.2过零率与峰值幅度(ZCPA)

2.4本章小结

3 基于神经网络的分类器设计

3.1 语音情感识别技术基本原理

3.2语音情感识别方法

3.3神经网络

3.3.1神经网络发展历史

3.3.2神经网络基础理论

3.3.3人工神经网络数学原理

3.4四种特征参数的情感识别模型

3.4.1情感语句中四种特征参数的识别实验

3.4.3实验分析与结论

3.5本章小结

4 结论与建议

参考文献

附 录

致 谢

图目录

图2.1 预加重处理后的幅频特性和相频特性

图2.2 预加重前及预加重后浊音时序信号和其频谱图

图2.3 矩形窗及其频谱

图2.4 汉明窗及其频谱

图2.5 短时平均能量实现的结构图

图2.6 帧长为200的语音短时能量

图2.7 语音信号端点检测

图2.8 原始语音和预测语音波形

表目录

表3.1 BP神经网络结果统计

表3.2 PNN结果统计

更多项目:

另有1000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员小马软件开发定制

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值