Python实现基于LSTM对股票走势的预测 毕业论文+项目源码及数据库文件

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:毕业通通通
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

  •                                 摘要

  • 为对股票价格的涨跌幅度进行预测,本文使用了基于长短期记忆网络(LSTM)的方法。根
  • 据股票涨跌幅问题, 通过对股票信息作多值量化分类,将股票预测转化成一个多维函数拟
  • 合问题。将股票的历史基本交易信息作为特征输入,利用神经网络对其训练,最后对股票的
  • 涨跌幅度做分类预测。数据集为代号 510050 的上证股票,实验结果表明该模型在单纯预测
  • 涨跌的情况下有比较好的预测效果。

  • 目录

一、问题描述..................................................................................................... 3

1.1 绪论............................................................................... 3

装                                                2.3 实现代码:..................................................................... 7

    1. 股票预测使用数据说明................................................... 11

    1. 特征工程处理................................................................. 14

订                                                2.8 输出数据说明............................................................... 16

线                    四、实验流程和结果......................................................................................... 19

    1. 搭建 LSTM 预测模型...................................................... 21

    1. 拟合结果评估方法概要................................................... 21

4.7 项目使用说明书 24

  • 一、问题描述

1.1 绪论

  • 随着我国经济的快速发展,政府、投资机构以及投资者们对股票预测的需求也越来越多。
  • 因此, 对股票价格走势的分析成为越来越多研究者关注的课题。但股票价格高度的波动性
  • 与不确定性,使其成 为计算机领域和金融领域的一大难题。

订             由于股票本身的波动性和不确定性,其价格是否可以被预测这一议题一直存在着不少争

议。在 1956 年,Fama 提出了“有效市场假说”,指出股票的价格可以立即充分地反映市场

上所有的已知信息,以及那些尚未发生但市场预期会发生的事件对股票价格的影响。这一假

  • 说为之后的股票预测工作提供了依据。
  • 股票投资通常会选择某一类或某一只股票来作为投资对象,对这一类或一只股票进行预线    测,既可以将整体的股票交易信息作为训练数据,也可以只选择该类或该只股票的交易信息
  • 作为训练数据。模型有决策树、LR、支持向量机等传统机器学习的方法,也有深度学习的方
  • 法。一种最常见的股票预测方法是自回归模型,然而此类模型通常用于处理线性的稳定数据,

用于处理股价存在着一定的局限性。因此也有人使用非线性模型如支持向量机、马尔可夫模

型等,用以处理股票的非线性特征。

  • 考虑到股票数据的时序性,本文选择用对时序序列有较好性能的 LSTM 网络分别对其训
  • 练,将训练好的模型用于预测次日收盘价的涨跌幅, 并对结果做对比分析。
  • 1.2 当前股票预测的方法概述
  •     基于决策树的逐步回归算法。逐步回归算法是目前被广泛应用的一种回归算法。逐
  • 步回归算法的基本思想是: 逐个引入自变量,每次引入的自变量对因变量 Y 影响

最显著。每引入一个新自变量,都要对之前引入到回归方程中的旧自变量进行逐个

检验,将当前方程中不显著的自 变量,从对因变量 Y  影响最小的自变量开始,进

  • 行逐个剔除,直到不能再引入新的 自变量为止。最终在回归方程中保留的自变量
  • 对因变量 Y 都是显著影响的,而不在 回归方程中的自变量对 Y 的作用都是不显
  • 著的,这样的回归方程称为最优回归方程。

装                 SVM 方法,参考目前论文中出现频率最高的 SVM、BP 神经网 络和小波神经网络

股票预测模型,分别构建了 3 个 6 输 入、1 输出的股票预测模型。输入分别为:

某日上证 指数的开盘指数(价)、指数(股价)最高值、指数(股价)  最低值、收盘指数

(价)、交易量和交易额;输出为输入次日的收盘指数(价)。

  •     线性回归算法,在 CTR 预估问题的发展初期,使用最多的方法就是逻辑回归(LR), 订                   LR 使用了 Sigmoid 变换将函数值映射到 0~1 区间,映射后的函数值就是 CTR 的预
  • 估值。LR  属于线性模型,容易并行化,可以轻松处理上亿条数据,但是学习能力
  • 十分有限,需要大量的特征工程来增加模型的学习能力。但大量的特征工程耗时耗

力同时并不一定会带来效果提升。因此,如何自动发现有效的特征、特征组合,弥

补人工经验不足,缩短 LR 特征实验周期,是亟需解决的问题。

线                 深度学习算法。通过多种不同的向量表示学习方法,从不同角度抽取特征,并利用

  • 多路循环神经网络对每种特征进行单独处理,充分利用所获取的数据信息,最后再
  • 将特征进行拼接,共同对股票价格进行预测。神经网络分为多种,BP  神经网络是
  • 一种按照误差逆向传播算法训练的多层前馈神经网络,也是目前应用最广泛的神经
  • 网络;卷积神经网络(CNN)则是通过构造卷积层来提取输入特征,再利用前馈连接

来完成特征的输出,它是深度学习的代表算法之一;循环神经网络(RNN)适用于输

入是序列的数据,它是一种在序列的演进方向进行递归,循环单元按照链式连接的

  • 一种神经网络。

  • 1.3 本文所使用的模型
  • 长短期记忆网络(LSTM)则是对 RNN 的一种改进,它通过引入门机制构建特殊的记忆神
  • 经单元,从而解决不能实现信息的长期依赖问题。LSTM 结构如图 1 所示,其包括输入门

𝑡𝑖、输出门𝑡𝑜 、遗忘门𝑓𝑡等门结构,这些门结构通过以下的递归方程来更新细胞状态𝐶𝑡,同

时激活从输入到输出的映射。

  • 本文主要针对预测股票涨跌幅度的目标,将其转换为一个多分类任务来进行处理。 影
  • 响股票涨跌的因素有很多,与股票本身信息相关的有其基本交易数据如开盘价、收盘价、
  • 最高价、最低价、交易量、涨跌幅等,还有交易数据衍生出的一些统计技术指标,如换手
  • 率等。 除了交易数据,股市波动还通常和舆论、政策等因素相关。但这些特征信息不能直
  • 观、即时的反映到后续的股票价格中去,同时这些信息是否与股票的基本信息耦合也尚未线

论证。因此本文只对股票的此类基本交易数据作为输入特征。具体细节将在第三部分阐

述。

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值