!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!
💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。
目 录
摘要.................................................. 1
Abstracts............................................. 2
第1章 总体设计....................................... 3
一、设计的科学性.................................... 3
(一) 项目的意义价值............................ 3
(二) 总体思路.................................. 3
(三) 主要内容.................................. 5
(四)技术方法................................... 6
二、设计的创新性.................................... 7
(一) 主要创新点................................ 7
(二) 关键技术.................................. 8
三、 实用性........................................ 9
(一) 项目适用范围.............................. 9
(二) 可行性.................................... 9
(三) 推广前景................................. 10
(四) 市场分析及经济社会效益预测................ 11
第2章 详细设计与实现................................. 13
一、数据库设计..................................... 13
二、功能模块设计................................... 13
1、 功能结构图.................................. 13
2、 注册和登录模块.............................. 14
3、 水果检测模块................................ 16
4、 水果详情模块................................ 18
5、 用户管理模块................................ 20
6、 历史记录模块................................ 22
7、 退出登录模块................................ 23
三、核心源代码..................................... 24
(一)用户注册功能核心代码....................... 24
(二)用户登录功能核心代码....................... 25
(三)水果检测功能核心代码....................... 26
(四)水果详情功能核心代码....................... 27
(五)用户管理功能核心代码....................... 28
(六)历史记录功能核心代码....................... 30
(七)退出登录功能核心代码....................... 31
第3章 成果和效益..................................... 32
一、成果.......................................... 32
摘要
随着人工智能和图像处理技术的发展,水果检测与识别系统具有广阔的发展前景。该系统不仅为用户提供高效、准确的水果识别服务,还具备显著的研究意义,推动农业智能化和健康饮食的普及。其优点包括快速响应、准确识别及全面的信息管理,帮助用户了解水果的营养价值和健康益处,从而做出健康的饮食选择。
该项目利用YOLOv5深度学习模型和Flask框架,集成了以下功能:用户登录和注册、水果检测与识别、水果详情、用户管理、历史记录分页显示及退出登录。这些功能确保用户能够方便地使用系统,同时保障数据隐私和安全性。系统通过调用已训练好的YOLOv5模型进行检测与识别上传的图像,迅速返回识别结果,并提供一些水果信息,提升用户体验。整个系统界面设计简洁、直观,采用HTML和CSS技术,使得操作流程清晰明了。
通过上述功能,水果检测与识别系统不仅极大提高了水果识别的效率,还为用户提供了全面的信息管理服务,显著提升了用户体验与满意度,具有重要的实际应用价值和发展潜力。
关键字:YOLOv5深度学习模型;Flask框架;水果识别
Abstracts
With the development of artificial intelligence and image processing technology, the fruit detection and recognition system has a broad development prospect. This system not only provides users with efficient and accurate fruit recognition services but also has significant research implications, promoting the intelligentization of agriculture and the popularization of healthy eating. Its advantages include quick response, accurate recognition, and comprehensive information management, helping users understand the nutritional value and health benefits of fruits, thereby making healthier dietary choices.
This project utilizes the YOLOv5 deep learning model and the Flask framework, integrating the following functionalities: user login and registration, fruit detection and recognition, fruit details, user management, historical record pagination, and logout. These features ensure that users can conveniently use the system while safeguarding data privacy and security. The system swiftly returns recognition results by calling the pre-trained YOLOv5 model to analyze uploaded images, providing information about various fruits to enhance user experience. The overall system interface is designed to be simple and intuitive, employing HTML and CSS technologies to ensure a clear and straightforward operational process.
Through these features, the fruit detection and recognition system not only greatly improves the efficiency of fruit recognition but also provides users with comprehensive information management services, significantly enhancing user experience and satisfaction, and demonstrating important practical application value and development potential.
Keywords:YOLOv5 deep learning model;Flask framework;Fruit recognition
第1章 总体设计
1、提高生产效率与降低人工成本
系统通过先进的图像识别技术,实现水果的自动检测,显著降低了传统人工分类过程中的低效操作。这种自动化处理能够快速分析和分类大批量水果图像,不仅提高了生产和分拣的效率,还大大缩短了作业时间。此外,系统降低了对人工识别经验的依赖,减少了人力投入,尤其是在劳动密集型的环境中。自动化识别能够有效避免人工操作中的主观误差,确保水果分类的准确性,从而提高了整体生产质量和效率。
2、改善用户体验
用户可以通过简单的图片上传操作来完成水果识别,整个过程设计友好且直观,易于使用。系统不仅提供快速的识别功能,还为用户展示全面的检测信息,包括水果的种类、特点等。同时,历史记录功能让用户能够方便查看之前的检测数据,帮助用户更好地跟踪水果的分类和分销情况,提升了用户的使用满意度和信任感。
3、推动智能农业发展
该系统不仅是一个水果检测工具,它还可以作为智能农业管理的一部分,帮助农户更高效地管理水果的分类和分销流程。通过精准的检测和分类,农户能够在市场中更好地定位自己的产品,提升销售效率。此外,基于水果检测的历史数据,农业生产者能够获得更加准确的生产和市场分析数据,这些信息有助于优化农业决策,提升生产效率,实现更可持续的发展,从而推动整个智能农业的进步。
水果检测与识别系统的设计初衷是利用先进的图像处理和机器学习技术,提升水果分类与检测的效率与准确性,满足现代农业对智能化管理的需求。该系统主要基于YOLOv5模型进行水果的实时检测,结合Flask框架搭建用户友好的Web界面,用户可以通过简单的图片上传操作实现水果识别。系统的主要功能包括用户注册与登录、上传图片进行水果检测、水果详情、用户管理、访问历史检测记录以及安全退出登录等。数据存储方面,系统使用MySQL数据库保存用户信息,确保数据的安全性与可靠性。整体系统结构清晰,前端采用HTML和CSS设计界面,后端使用Python处理用户请求并与数据库交互。通过这样的设计,系统不仅提高了水果检测的效率,降低了人工成本,还为用户提供了便捷的使用体验,推动了智能农业的持续发展。
- 数据收集与标注
(1)从百度飞浆平台下载的开源水果数据集,其中包括不同种类、不同环境和不同角度的水果图片。
(2)使用labelimg工具对水果数据集进行标注。在labelimg中打开图片所在的文件夹,手动框选水果并标注类别,有“apple”、“banana”、“cherry”、“grape”、“kivi”、“orange”、“pear”、“strawberry”和“watermelon”。标注完成后,生成对应的txt文件保存到指定目录,包含每个水果的类别和位置坐标。具体如图1所示。
图1 数据标注
- 模型训练
(1)在datasets
文件夹下,存在images
和labels
两个子文件夹。将标注好的水果图片存放在images
文件夹中,对应的txt标注文件存放在labels
文件夹中,其中,训练集和验证集按4:1的比例划分。
(2)在coco128.yaml
文件中,修改训练集和测试集的路径,指向相应的训练和验证数据集文件夹。同时更新水果的种类信息,确保与标注数据一致。
(3)在train.py
文件中,首先设置权重路径,指向预训练模型;接着,配置模型的架构路径,确保加载合适的模型;然后,指定数据集配置文件的路径,以确保训练能够找到水果数据集;接下来,调整训练轮数;同时,设置每批次训练的样本数为16,并定义训练和测试集的输入尺寸为640x640。
(4)在yolov5s.yaml文件中,修改类别数量为9。
本项目实现的系统包括用户注册和登录、水果检测、水果详情、用户管理、历史记录和退出登录六个模块。
- 用户注册和登录功能
用户注册和登录模块为系统的安全性提供了基础,用户在注册时需要提供必要的信息,如用户名和密码,这些信息将被安全存储。注册完成后,用户可以通过登录功能访问系统,系统会验证用户身份,确保只有授权用户能够进入系统,保护个人数据和检测结果的隐私。这一功能的实现使得用户可以安心使用系统,避免了未经授权的访问。
- 水果检测功能
在水果检测模块中,用户只需通过简单的操作上传水果图片,系统将调用基于YOLOv5训练的模型进行检测和识别。这一过程对用户友好,无需专业知识,操作简单直观。系统能够快速处理大量图像,实时提供检测结果,显著提升了传统水果分类方法的效率。识别结果包括水果的名称及其一些特点。这些信息不仅帮助用户快速识别水果,还为市场销售和管理提供重要依据,使农户和商家能够做出更明智的决策,从而提升整体工作效率。
- 水果详情功能
水果详情模块进一步扩展了用户对水果的了解,该模块设计了超链接,用户点击后可以进入特定的水果详情页面,查看该水果的更多信息和健康益处。此外,用户还可以选择查看百度百科中关于该水果的介绍,获取更全面的背景知识。用户在浏览后,可以方便地返回水果详情模块,继续探索其他水果的信息。这种设计不仅提高了用户对系统的依赖性和信任感,也为他们提供了丰富的专业信息,进一步提升了整体使用体验。
- 用户管理功能
用户管理模块为用户提供了更高的灵活性,允许他们修改个人信息,如更新密码和修改用户名。这一功能确保用户能够根据个人需求随时调整账户信息,从而增强系统的个性化服务。此外,模块支持添加新用户、修改其他用户的用户名和密码,以及删除用户信息,确保系统能够适应不同的使用场景。通过这些灵活的功能,用户管理模块有效地提升了系统的可用性,满足了用户对灵活管理账户的需求。
- 历史记录功能
历史记录模块自动保存用户的历史检测记录,包括检测结果图片及检测时间。所有记录按照时间顺序分页展示,使用户能够轻松查看这些信息。这种设计为用户提供了方便的访问方式,帮助他们追踪以往的检测情况,特别适合需要长期监控或比较水果状态的用户。通过这一模块,用户可以快速回顾历史检测结果,从而为未来的决策提供参考依据,提升整体使用体验。
- 退出登录功能
退出登录功能确保用户在使用系统后能够安全退出,保护其账户信息。在退出登录模块中,用户可以选择点击“取消”按钮,返回到点击退出登录前的页面,或者点击“确定”按钮,安全返回登录页面。这一功能虽然看似简单,但在保证用户信息安全方面起着至关重要的作用,使用户在完成操作后能够放心地退出系统。
本项目设计中技术路线分为:深度学习模型、前端设计、后端设计、数据库设计、安全性和用户管理。
- 深度学习模型
系统利用训练好的YOLOv5深度学习模型进行水果的图像检测和识别。该模型具备高效的实时处理能力,能够准确识别多种水果,并返回相应的检测结果。YOLOv5的优势在于其快速的检测速度和较高的识别准确率,使得系统能够及时响应用户的需求,提升整体用户体验。
- 前端设计
系统前端采用HTML和CSS进行页面设计,以确保用户界面的简洁直观和良好的用户体验。通过合理的布局和美观的样式,用户能够轻松导航和操作系统,快速上传图片并获取检测结果,增强了操作的便捷性。
- 后端设计
系统后端采用Flask作为开发框架。Flask是一种轻量级的Python Web框架,提供灵活的开发环境,便于快速构建和维护Web应用。其模块化设计使得开发人员可以根据项目需求灵活添加功能,促进了高效的开发过程。
- 数据库设计
系统使用MySQL关系型数据库来存储用户信息。MySQL作为一种成熟的数据库管理系统,具有高性能和可靠性,能够高效存取数据。合理的数据库设计确保了用户信息的安全性和完整性,为系统的稳定运行提供了保障。
- 安全性和用户管理
- 为确保数据安全,系统实施身份验证机制。用户在登录后才能访问系统的各项功能,而未登录用户无法访问任何系统页面。这一设计有效保护了用户数据,确保只有授权用户才能使用系统的服务。
- 系统实现了会话管理功能,确保用户在退出登录后会清除会话信息,防止用户通过浏览器的“后退”功能访问之前的页面。这一措施增强了系统的安全性,有效防止未授权访问,保护用户的隐私和数据安全。
- 智能水果识别与反馈:用户在上传水果图片后,系统不仅会快速提供识别结果,还会显示识别的置信度,帮助用户理解识别的准确性。这种反馈机制使用户能够对系统的识别能力有更直观的认识。同时,水果详情页面会动态展示相关水果的图片、特征和健康益处,增加用户对不同水果的了解,从而帮助用户在选择水果时做出更明智的决策。
- 便捷的历史记录管理:系统会按照时间顺序展示用户的检测历史,方便用户快速查看最新记录。历史记录的有序排列使得用户能够轻松回顾过去的检测结果,并在需要时进行比较或分析。这一功能特别适合需要对水果进行长期监控的用户,如农户或水果销售商,能够有效支持他们的决策和管理工作。
- 简化的用户管理与友好界面:用户管理模块允许用户方便地添加、修改和删除其他用户的信息,简化了管理流程,增强了用户对账户管理的控制感。这一设计不仅提升了用户的操作效率,也增强了系统的灵活性。此外,系统采用简洁明了的界面布局,提升了操作的直观性和易用性,确保不同层次的用户都能快速上手,享受良好的使用体验。通过这些创新点,系统有效提升了用户的满意度和使用效率。
- 深度学习模型(YOLOv5)
- YOLOv5是一种先进的目标检测模型,能够在实时性和准确性之间取得良好平衡。
- 模型训练过程使用标注好的水果图像数据集,以提高识别效果。
- YOLOv5能够处理多种水果种类,实现快速、准确的检测与分类。
- 数据库(MySQL)
- 使用MySQL数据库存储用户信息,确保数据的持久化和安全性。
- 通过SQL语句实现对数据的增删改查操作,保障系统的灵活性和稳定性。
- Flask框架
- Flask是一个轻量级的Python web框架,用于构建后端服务。
- 通过Flask实现后端逻辑,处理来自前端的请求,调用深度学习模型进行水果检测与识别。
- HTML和CSS
- 系统前端采用HTML和CSS进行页面设计,旨在创建用户友好的界面。
- 通过HTML构建网页结构,使用CSS进行样式设计,确保界面简洁直观,提升用户体验。
- 前端设计的灵活性和美观性,使用户能够轻松导航和操作,快速完成水果上传及识别等功能。
- 农业生产:为果农提供快速、准确的水果种类识别工具,帮助他们在收获和运输过程中确保水果的种类,提高生产效率。
- 零售商和市场:超市、农贸市场等零售商可以利用该系统快速识别水果种类,优化库存管理和客户服务,提升购物体验。
- 食品加工企业:加工企业在原材料采购时可以使用该系统进行水果种类的识别,确保符合生产标准,减少材料浪费。
- 教育与培训:教育机构和培训中心可以利用该系统进行水果种类和营养知识的教学,提高学生和公众的水果知识水平。
- 技术可行性
- 成熟的YOLOv5模型:系统采用YOLOv5模型进行水果种类识别,YOLOv5是广泛应用于物体检测领域的成熟算法,具备高效的实时处理能力和较高的准确性,能够满足水果种类识别的需求。
- 轻量级的Flask框架:使用Flask作为后端开发框架,轻量、灵活且易于部署。Flask适合快速构建小型和中型Web应用,开发周期短,支持快速迭代更新。
- 前端技术的简易实现:HTML和CSS用于构建用户界面,技术简单易学,能够快速设计出友好的用户界面。同时,前端的开发成本较低,易于维护。
- MySQL数据库:MySQL作为成熟的关系型数据库,支持高效的数据存储和管理,可以很好地支持用户信息数据操作,数据量增加时也能保持较高的可扩展性。
- 用户需求的可行性
- 广泛的用户基础:水果是全球日常消费品,消费者、农民、零售商等都有对水果种类识别的潜在需求。通过提供一种简单易用的识别工具,可以帮助他们快速获取水果种类及相关信息,符合市场需求。
- 便捷性与易用性:该系统通过图片上传即可识别水果,操作简便,降低了用户使用门槛。对于没有技术背景的用户(如农民或普通消费者),系统的友好界面与简化流程使得应用更加便捷可行。
- 市场推广的可行性
- 低开发成本:由于该系统主要基于开源技术,如YOLOv5、Flask、MySQL等,开发成本低。大部分技术在社区中有丰富的支持资源,项目的后续维护和更新也相对容易。
- 硬件需求低:该系统对硬件资源需求较低,普通的计算设备或服务器即可支持系统运行。因此,企业或个人用户无需大量硬件投入即可使用,降低了部署门槛。
- 市场需求强劲
(1)全球水果消费增长:随着健康饮食理念的普及和全球水果消费的增长,消费者对水果的种类和质量有了更高的要求。该系统能够帮助用户快速识别水果的种类,并提供相关信息,如营养成分等,满足消费者对健康饮食的需求,市场潜力巨大。
(2)农业现代化的推进:全球农业正在向现代化、智能化发展,农民和农业企业对于提高生产效率的需求不断增加。水果检测系统能够在水果种类识别、质量控制等方面帮助农民和企业提升效率,尤其在水果产量大的国家和地区,具有较强的推广潜力。
- 适用范围广泛
(1)多场景适用:系统不仅可以应用于农业、食品零售和食品加工等传统领域,还可以扩展到电商平台、移动应用程序和智能设备中。例如,水果电商平台可以通过该系统增强用户体验,移动应用可以帮助消费者随时识别水果种类,甚至可以与智能厨房设备整合,进一步扩展应用场景。
(2)教育与科普:该系统在学校、社区活动中也具有推广价值,可以作为水果知识普及的工具,提升公众对不同水果的认知,尤其适合儿童和青少年的教育推广活动。
- 低成本推广
(1)开源技术支持:该系统的技术栈主要基于开源项目(如YOLOv5、Flask、MySQL),因此开发和推广成本相对较低。企业或机构可以以较小的投入进行系统部署,并快速获取市场反馈。
(2)易部署性与灵活性:由于系统对硬件要求较低,具有良好的可扩展性,可以根据不同的市场需求快速调整和部署。无论是小型农户、超市,还是大型食品加工企业,都可以根据自身需求灵活使用该系统。
- 市场分析:在全球农业数字化转型的大趋势下,农业生产、管理和销售模式逐步向智能化方向发展。农民和农业企业正在越来越多地使用技术工具来优化生产效率、管理供应链,水果检测与识别系统作为一款实用的智能农业工具,能够帮助农业从业者提高产量和质量。同时,也为农业电商、线上水果零售等新兴业务模式提供技术支撑,特别是在快速发展的水果电商市场中,该技术将具有很强的竞争力。
- 经济效益预测:水果检测与识别系统能够显著降低农业和零售行业的运营成本。对于农业领域,该系统减少了人工分类水果的工作量和错误率。在零售和食品加工企业中,系统自动化水果分类功能减少了人工操作,降低了人为错误带来的经济损失,并提升了供应链的整体效率。此外,随着该技术的推广,市场对技术人员的需求增加,推动了相关就业机会的增长,进一步促进了产业链上下游的经济效益提升。
- 社会效益预测:水果检测与识别系统在提升食品安全和健康饮食理念普及方面具有重要社会价值。系统通过提供水果的种类和营养信息,增强消费者对食品来源和安全的信任。该系统还将推动农业现代化,特别是在技术水平较低的地区,它帮助农民提升生产效率,增加收入,缩小与发达地区的技术差距。随着农业的智能化进程加快,该系统将在促进农村经济发展和社会公平方面发挥积极作用,为农业生产和区域经济带来长远的社会效益。
- 深度学习模型(YOLOv5)
- YOLOv5是一种先进的目标检测模型,能够在实时性和准确性之间取得良好平衡。
- 模型训练过程使用标注好的水果图像数据集,以提高识别效果。
- YOLOv5能够处理多种水果种类,实现快速、准确的检测与分类。
- 数据库(MySQL)
- 使用MySQL数据库存储用户信息,确保数据的持久化和安全性。
- 通过SQL语句实现对数据的增删改查操作,保障系统的灵活性和稳定性。
- Flask框架
- Flask是一个轻量级的Python web框架,用于构建后端服务。
- 通过Flask实现后端逻辑,处理来自前端的请求,调用深度学习模型进行水果检测与识别。
- HTML和CSS
- 系统前端采用HTML和CSS进行页面设计,旨在创建用户友好的界面。
- 通过HTML构建网页结构,使用CSS进行样式设计,确保界面简洁直观,提升用户体验。
- 前端设计的灵活性和美观性,使用户能够轻松导航和操作,快速完成水果上传及识别等功能。
图3 功能结构图
图4 用户注册和登录模块设计图
- 用户通过 HTML 和 CSS 构建的注册界面输入必要的注册信息,包括用户名和密码。系统在
flask_app.py
中的register()
函数负责处理用户的注册请求,首先检查输入的用户名是否已存在于数据库中的f_users
表。如果用户名重复,系统会向用户提供明确提示,确保用户数据的完整性。
图5 用户注册
- 登录界面同样使用 HTML 和 CSS,用户在界面中输入注册时的用户名和密码后,系统将这些信息提交给
flask_app.py
中的login()
函数。该函数通过查询f_users
表验证用户身份,确认用户名和密码是否匹配。如果验证失败,系统会及时反馈,提示用户输入的信息有误,提升用户体验。
图6 用户登录
(3)在注册和登录的过程中,系统使用 SQL 查询语句与 f_users
表进行交互。系统确保在用户注册时避免重复用户名,同时在用户登录时核实身份,保障用户信息的安全性和完整性。这一过程涉及对数据库的读写操作,确保用户数据的及时更新和准确存储。
(4)系统在用户注册和登录时提供实时反馈。例如,在用户注册时,如果所选用户名已存在,系统会在注册界面上明确提示;而在登录时,如果用户身份验证失败,系统也会提示用户检查输入。这些反馈机制不仅提高了用户体验,也减少了用户在操作过程中的困惑。
(5)一旦用户成功登录,系统将创建用户会话,确保用户能够安全地访问各项系统功能。在用户退出后,系统会清除会话信息,防止未授权的访问,保护用户的个人信息安全。此外,系统设计简洁直观,方便用户随时修改个人信息或安全设置,进一步提升了系统的灵活性和用户体验。
图7 首页
图8 水果检测模块设计图
(1)系统的用户界面采用 HTML 和 CSS 构建,确保界面简洁直观,便于用户操作。首页提供了明确的上传按钮和相关说明,使用户能够快速找到水果图片上传的入口。设计中考虑到用户体验,确保每个操作步骤都易于理解,减少用户的学习成本。用户上传图片后,系统会以清晰的方式展示识别结果,包括水果的名称和特点,帮助用户更好地理解结果。
(2)在 flask_app.py
文件中,定义了处理水果检测请求的视图函数。该函数首先接收用户上传的图片,并对其进行格式和大小的检查,确保上传内容符合系统要求。然后,系统调用训练好的 YOLOv5 模型,对上传的图像进行分析,实现自动识别水果种类。识别完成后,系统将结果整理为易于理解的格式,包括识别的水果名称、置信度和特点等信息,并将这些数据传递到前端页面进行展示。
图9 上传图片前
图10 上传图片后
图11 水果详情模块设计图
(1)水果详情模块作为一个独立的功能模块,专门为用户提供每种水果的信息展示。该模块的界面通过 HTML 和 CSS 构建,确保整体布局清晰美观,配色和字体选择符合用户阅读习惯,使用户能够轻松找到每种水果的超链接,便于快速导航和访问。
(2)用户点击超链接后,将进入特定水果的详情页面。在该页面上,用户可以查看水果的高清图片、详细特点及其健康益处。这些信息经过专业整理,包含了水果的营养成分、适宜食用方法及其对健康的潜在影响,旨在帮助用户更深入地了解所选水果的价值。这样的信息展示不仅增强了用户对水果的信任感,还为他们在选择和购买水果时提供了合理依据,鼓励健康的生活方式。
(3)在 flask_app.py
文件中,定义了多个视图函数,以处理不同的用户请求。每个函数对应特定的页面,通过路由将用户的请求与相应的处理逻辑连接起来。这种设计方式使得代码结构清晰,便于维护和扩展。
图12 水果详情
图13 樱桃详情页面
图14 用户管理模块设计图
(1)在用户管理模块中,用户可以通过输入用户名和密码来添加新用户。该功能通过HTML和CSS构建的界面提供,确保用户体验友好且直观。用户只需填写必要信息,系统会实时验证输入的合法性。后台使用flask_app.py
文件中的视图函数处理添加新用户的请求,确保数据准确地存入f_users
表,增强了系统的灵活性和可扩展性,为管理多用户提供便利。
(2)用户可以在此模块中直接修改自己的用户名和密码,以确保账户的安全性。界面设计简洁且易于操作,用户只需在输入框中填写新的用户名和密码,并点击“修改用户”按钮。系统会实时验证输入的信息,确保合法性。后台视图函数会验证用户身份,确保只有经过身份验证的用户才能进行信息更新。
(3)此模块还允许用户选择删除其他用户,系统将相应清除该用户的所有数据,确保用户管理的灵活性。用户可以轻松浏览所有账户,选择要删除的用户。删除操作前,系统会提示确认,避免误操作。flask_app.py
中的视图函数负责执行删除请求,确保所有相关数据被准确无误地清除,维护数据库的整洁性和一致性。
图15 用户管理
图16 历史记录模块设计图
(1)系统会自动保存用户的历史检测记录,包括每次检测结果的图片和时间戳,便于后续查询。用户可以随时查看自己的检测历史,通过直观的界面了解不同时间点的检测结果。该界面通过 HTML 和 CSS 构建,确保用户体验友好且直观。
(2)历史记录按照时间顺序分页展示,用户可以轻松浏览以往的检测信息。在后台,flask_app.py 文件中的视图函数负责遍历 history
文件夹中的图像文件,并将相关信息传递给前端。每次检测的时间戳与对应的图像一并显示,便于用户直观对比历史检测结果。此外,系统会确保图像的加载速度和展示效果,提升用户体验。
图17 历史记录
图18 退出登录模块设计图
(1)该模块提供安全退出系统的功能,确保用户的个人账户信息不被未授权访问。用户在使用公共设备时,可以放心地选择退出,保护个人隐私。当用户点击“退出登录”后,系统会弹出一个确认对话框,明确询问用户是否确认退出。这一设计不仅能防止用户因误操作而退出系统,还能提升用户的安全意识,确保他们在执行此类重要操作时是经过深思熟虑的。
(2)如果用户点击确定,系统将重置登录状态并安全返回到登录页面,防止其他人使用相同设备访问用户信息。在此过程中,系统会彻底清除与用户会话相关的所有数据,包括任何缓存信息和临时存储的用户数据,以进一步保障用户的信息安全。如果用户选择取消,系统则会返回到点击退出登录前的页面,保持用户的操作环境不变,确保他们的工作不被打断。这一设计虽然简单,却在保护用户信息和维护系统安全方面发挥着至关重要的作用,增强了用户体验的友好性。
图19 退出登录
更多项目:
另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!
!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!