基于STM车牌号识别系统 任务书+答辩PPT+原理图+毕业论文+项目源码及数据库文件

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

摘 要

随着我国工业化和城市化的发展,汽车已经是每一个家庭出入的首选工具。汽车的增加使得智能交通体系愈来愈成为路况交通管理的一种趋势,而车牌识别是制约道路交通智能的重要因素。本文的车牌识别系统是根据我国车牌的形状特征研究与实现了车牌识别的过程与方法。第一、根据采集的图像处理后定位出车牌的具体位置;第二、在定位的车牌区域中切割出每一个车牌的文字特征;第三、识别并打印出切割后的车牌信息。系统是以STM32F103RBT单片机为主控芯片,控制OV7670摄像头进行图像采集,通过二值化,分析跳变点对车牌区域进行确定,再通过字符分割、字符匹配最后获得车牌的识别结果。系统使用keil软件编程实现了车牌识别系统。整个系统软件硬件相结合,运用嵌入式技术和图像处理技术,实现了系统的完整性运行。

关键词: 图像处理;车牌定位;字符分割;字符识别

ABSTRACT

With the development of industrialization and urbanization in China, the car has been the first choice for every family.With the increase of automobiles, intelligent traffic system has become a trend of traffic management, and license plate recognition is an important factor that restricts road traffic intelligence.The license plate recognition system in this paper studies and realizes the process and method of license plate recognition according to the shape characteristics of license plates in China.First, locate the specific location of the license plate according to the collected image processing;Second, cut out the character of each license plate in the location of the license plate area;Third, recognize and print out the cut license plate information.The system takes STM32F103RBT microcontroller as the main control chip, controls the OV7670 camera for image acquisition, determines the license plate area through binarization, analyzes the jump points, and finally obtains the license plate recognition results through character segmentation and character matching.The license plate recognition system is realized by keil software programming.The integrated operation of the system is realized by using embedded technology and image processing technology.

Key words: Image processing, License plate positioning, Character segmentation, Character recognition

目 录

摘 要.................................................................................................. 3

ABSTRACT....................................................................................... 4

第1章    绪论...................................................................................... 1

1.1    研究背景、目的及意义.............................................................. 1

1.1.1   研究背景............................................................................ 1

1.1.2   研究目的及意义................................................................ 1

1.2    国内外文献综述......................................................................... 2

1.2.1   国外文献综述.................................................................... 2

1.2.2   国内文献综述.................................................................... 2

1.3    研究的主要内容和方法.............................................................. 3

1.3.1   研究内容............................................................................ 3

1.3.2   研究方法............................................................................ 4

1.4    应用场景.................................................................................... 4

第2章    研究的相关技术................................................................... 5

2.1    嵌入式技术................................................................................. 5

2.2    图像处理技术............................................................................. 5

2.3    系统方案.................................................................................... 6

第3章    硬件系统设计....................................................................... 8

3.1    最小系统设计............................................................................. 8

3.2    图像采集处理........................................................................... 10

3.3    系统设计显示处理.................................................................... 12

第4章    控制系统软件设计............................................................. 14

4.1    STM32开发环境介绍............................................................... 14

4.2    STM32的ARM-Cortex的软件架构介绍................................. 14

4.3    车牌识别系统软件具体设计..................................................... 15

4.3.1   图像采集.......................................................................... 15

4.3.2   二值化分析...................................................................... 15

4.3.3   识别车牌区域.................................................................. 16

4.3.4   字符分割.......................................................................... 19

4.3.5   字符匹配.......................................................................... 20

第5章    系统测试............................................................................ 22

5.1    测试目的.................................................................................. 22

5.2    摄像头测试............................................................................... 22

5.3    显示屏测试............................................................................... 23

5.4    单片机测试............................................................................... 23

5.5    系统稳定性测试....................................................................... 24

第6章    总结与展望........................................................................ 26

6.1    总结.......................................................................................... 26

6.2    展望.......................................................................................... 26

参考文献........................................................................................... 27

致 谢................................................................................................ 28

  1. 绪论
    1. 研究背景、目的及意义
      1. 研究背景

在当下,城市化进程正以令人瞩目的速度迅猛推进,犹如汹涌浪潮,势不可挡。伴随这一进程的是汽车保有量的爆发式增长。据权威数据表明,截至2024年末,全国机动车保有量已飙升至4.35亿辆,仅上一年,全国新注册登记的机动车数量就高达3470万辆。如此庞大的机动车规模,给交通管理工作带来了前所未有的严峻挑战。城市道路拥堵状况日益加剧,通行效率大幅下降;交通事故频发,严重威胁着人们的生命财产安全;违章行为屡禁不止,极大地扰乱了正常的交通秩序。

与此同时,在智能交通体系蓬勃发展的浪潮中,图像处理技术、自动检测技术等先进科技不断涌现,它们相互交融、协同共进,正深刻变革着传统交通管理模式。其中,车牌识别系统作为道路交通管理领域的核心关键技术,在整个智能交通体系中占据着举足轻重、不可替代的地位,发挥着至关重要的作用。

      1. 研究目的及意义

本研究旨在深入探究车牌识别系统,致力于对其进行优化与完善,以充分发挥该系统在交通管理等多领域的巨大价值。一套完备的车牌识别系统,拥有强大且精准的车辆身份识别能力,恰似为每一辆车赋予了独一无二的“电子标识”。凭借这一系统,交通管理得以迈向信息化与智能化的全新阶段。它能够对车辆进行实时监控,及时查处违规行为,确保交通规则得以严格执行,从而有效降低交通事故的发生概率。在人们的日常出行中,车牌识别系统是高效与安全的有力保障,无论是城市中繁忙的街道,还是停车场、高速公路等各类交通场景,都广泛应用且不可或缺。

具体而言,在小区与停车场管理场景中,车牌识别管理系统承担着监控车辆出入的重任。车辆进出时,车牌系统能够快速识别车牌,并通过网络将识别信息传输至管理系统进行登记。这一流程既节省了人力,保障了人员安全,又大幅缩短了车辆进出登记时间,显著提升了管理效率。在交通道路监控方面,道路交通检测部门日常会面临大量违规车辆。以往,对于肇事逃逸车辆、挂失车辆、欠费车辆等被列入“黑名册”的车辆,常依靠摄像机录制车牌视频记录,人工识别比对车牌号码效率低且易出错。而运用车牌识别系统,只需设定车牌追踪目标,系统就能自动扫描摄像头监控范围内的车辆信息,完成识别、比对与处理,一旦发现符合条件的车辆,立即报警。在收费站管理系统中,自2019年我国全面推行高速公路ETC收费以来,在各类收费站场景中,对车牌识别系统的要求愈发严苛。车牌识别系统能够有效克服传统收费系统工作量大、人工易疲劳等缺点,减轻劳动强度,节省大量物力和人力,同时还能为司机节省大量驾驶时间,是提升收费站效率与服务质量的关键工具。在车流统计、车牌验证及移动车载系统中,车牌识别系统可用于车辆流量统计。当交通路段状况复杂,出现堵车或车辆超速等情况时,系统捕获车辆信息,发送至服务端,再由服务端传递到与车牌车主绑定的客户端。此外,车牌识别的基本方法还可拓展应用到其他识别和检测领域。

总体而言,车牌识别系统具备便捷性与高效性,在实际应用中可随时快速调取并分析信息,精准定位车牌关联的车主信息,进而实施相应处理流程,极大地减少了人力与物力投入,显著提升工作效率。因此,针对车牌识别技术展开深入研究,对于优化交通管理流程、提升城市交通智能化水平,具有极为重要的现实意义与实践价值。

    1. 国内外文献综述
      1. 国外文献综述

随着计算机技术的持续发展,电子识别领域不断取得新突破。在车牌自动识别方面,数字图像处理方法凭借其常见性与快捷性,成为主流方式。由于车牌识别系统对识别速度和精度要求颇高,国内外在数字图像处理领域围绕车牌识别技术投入了大量人力与时间,相关研究报道层出不穷。

自1984年起,美国、德国、意大利、英国、新加坡等众多国外国家,就已将车牌识别系统产品应用于实际场景。这表明在当时,国外已拥有成熟的技术产品并实现落地应用。车牌识别技术产品在各国的广泛运用,充分彰显了其在日常生活中便民利民的价值,无论是对企业还是个人都益处良多,无疑是一项极具实用性的技术,对未来科研学术研究也具有重要的借鉴意义。早在21世纪初,国外有关专家就提出将图像处理技术与嵌入式技术相结合,深入探讨相关算法,在车牌识别技术领域持续深耕。

      1. 国内文献综述

近年来,我国紧跟互联网信息时代步伐,众多企业和学者对车牌识别技术展现出浓厚兴趣,并展开深入研究。然而,由于我国在电子科研技术方面起步较晚,车牌识别技术的研究需要投入大量时间进行探索与打磨,达到一定技术水平后才能实现更广泛的应用。

此后,随着车牌识别技术系统的应用,我国车辆进出口数量和销售额均呈上升态势,这充分表明车牌识别技术的应用日益广泛,逐渐成为学者们研究的热点课题。我国科学院自动化研究所的刘智勇教授发表了一系列文章,通过设计特定函数,更全面地展现车牌识别系统的特点,并催生了“汉王眼”产品。随后,西安交大、上海交大、清华大学等知名高校也纷纷在该领域深入研究,取得了显著成果。许多公司依托车牌识别技术,推出相关产品,进入国内市场。

但由于文化与文字差异,我国不能直接照搬国外的汽车牌照识别系统技术。在借鉴国外先进技术的同时,必须探索适合我国国情的设计方法,以及应对实际应用中复杂情况的策略。尽管我国自主研发的车牌识别产品识别能力可达90%以上,但这些产品系统在获取牌照时对环境要求较高,在复杂环境且存在噪音的情况下,识别率较低,存在识别精度低、识别时间过长等问题。因此,我国车牌自动识别系统仍有广阔的发展空间。目前,我国在该领域研究热情高涨,随着国家经济实力的提升和科技水平的进步,有望在不久的将来,成功研发出契合我国国情、成熟且先进的车牌识别系统。国内众多高校的专家在车牌识别领域不断探索,已取得如彩色分割自动识别等一系列突破性成果 。

    1. 研究的主要内容和方法
      1. 研究内容

本研究聚焦于车牌识别系统的多个关键方面。首先,深入研究图像预处理技术,包括灰度化、降噪、二值化等方法,旨在消除图像中的噪声和干扰,增强车牌区域的对比度,为后续处理提供高质量图像。其次,对车牌定位算法展开探讨,对比基于颜色特征、纹理特征、形状特征等不同的车牌定位方法,结合我国车牌特点,优化并选择最适合的定位算法,实现车牌区域的快速、精准提取。再者,研究字符分割算法,如投影法、连通域分析等,根据车牌字符的排列规律和特点,改进算法以提高字符分割的准确性和稳定性。然后,探索字符识别方法,包括模板匹配法、神经网络法等,构建字符模板库或训练神经网络模型,实现对分割出的车牌字符的高精度识别。此外,还将研究如何将车牌识别算法与硬件设备(如摄像头、控制器等)进行有效集成,开发稳定、可靠的车牌识别系统软件,并对系统进行性能测试与优化,分析系统在不同环境下的识别效果,针对存在的问题提出改进措施,提升系统的适应性和稳定性。

      1. 研究方法

本研究采用多种研究方法。文献研究法是基础,通过广泛查阅国内外关于车牌识别技术的相关文献,全面了解该领域的研究现状、技术发展趋势以及存在的问题,为研究提供坚实的理论基础和技术参考。实验研究法贯穿始终,搭建实验平台,对不同的车牌识别算法进行实验验证,对比分析算法的性能指标,如识别准确率、识别速度等,通过大量实验数据来选择最优算法,并对算法进行优化。在系统设计过程中,运用系统设计法,从整体架构出发,对车牌识别系统进行全面规划,包括功能模块设计、硬件选型、软件架构设计等,确保系统的完整性、可靠性和可扩展性,以满足实际应用需求。

    1. 应用场景

车牌识别系统具有广泛的应用场景。在交通管理领域,可用于交通流量监测,通过实时识别过往车辆车牌,准确统计车流量,为交通部门制定交通疏导策略、优化交通信号灯配时提供数据支持;能对违章车辆进行自动抓拍和记录,通过与违章数据库比对,及时发现并处理闯红灯、超速、违规变道等违章行为,提高交通执法效率。在停车场管理方面,车辆进入停车场时,车牌识别系统自动识别车牌,记录车辆进入时间,车辆离场时再次识别车牌,计算停车时长并自动扣费,实现停车场的无人化管理,提高停车场的运营效率和管理水平,同时也为车主提供便捷的停车体验。在小区门禁管理中,车牌识别系统可对小区内业主车辆和外来车辆进行区分管理,业主车辆可快速通行,外来车辆需登记后进入,有效保障小区的安全秩序,提升小区居民的居住安全性和便利性。在高速公路收费场景,结合ETC技术,车牌识别系统实现车辆不停车快速收费,减少车辆在收费站的停留时间,缓解高速公路拥堵状况,提高高速公路的通行能力 。

  1. 研究的相关技术
    1. 嵌入式技术

近些年来,嵌入式技术在商业与学术领域都备受关注,热度颇高。它能够迅速崛起,得益于自身发展迅猛、应用场景丰富多样以及操作简便等优势。大家都知道,嵌入式产业所涵盖的范畴极为宽泛,其特性也十分显著,在诸多行业中都发挥着重要作用 。

嵌入式属于一类特殊的计算机系统,作为设备的关键构成部分而存在。至于嵌入式系统,它实际上是一块处理器控制板,其核心功能在于操控程序。这些程序预先存储于只读存储器(ROM)内,以此实现对嵌入式处理器控制板的精准管控 。[3]所以在目前的生活中,运用到嵌入式的产品比比皆是。比如手机、电脑、车辆,家居等拥有数字接口的产品。由一个程序来控制整个逻辑,这是大多数的嵌入式系统的组成运用,但是这不代表着全部,有些还包含了操作系统。

大学课程介绍了大量嵌入式相关知识,其中介绍到它是软硬结合体,也就是软件和硬件相结合形成的一个概念。换言之,只要不是个人PC机的一切类计算机系统都会划为嵌入式。嵌入式系统的程序一旦烧写到终端,一般不会进行改变。具有功耗低、目的性强执行效率高等很多优点。

嵌入式技术涉及到的领域很广,应用也很多。除了电子汽车行业之外,还有智能家居、工业生产、医疗技术等,应用最多的实属我们的国防领域。

    1. 图像处理技术

数字图像处理是通过计算机对图像进行一系列处理的技术。[4]一张图像,不但要去除图像存在的噪音,而且要对图像进行增强和复原,要保证图像原来的真实性,还要对图像进行切割,提取图像原有的特征,这就是数字图像处理的流程。

随着科技的发展,数字图像处理技术应用的领域相当广泛,对于生活中应用到的科技技术都是讲究精准和细腻的,所以对于图像处理的需求也愈来愈大。目前出现了各种各样的数字信号处理芯片,以及更多种类功能的GPU。本文采集图像用到的是OV7670模块,采用的图像处理技术包括了数据采集技术、图像的二值化、分割、模式识别等技术。对于图像的二值化,它的阈值是通过多次调试而得出最准确的阈值。图像的分割主要是对字符区域采用划线的方法进行统计分割。

    1. 系统方案

本研究设计的系统涵盖图像采集、处理以及显示装置这三大板块。在设计过程中,选用了基于 ARM cortex - m3 内核的 STM32F103 芯片搭建平台。该芯片运算能力出众,能够胜任较为复杂的运算任务,足以契合本次设计的各项需求。图像采集环节借助 OV7670 摄像头完成,显示装置则采用 TFT_ILI9341 2.8 寸显示屏。系统的模块架构示意如图 3.1 所示 。

图3.1 系统模块框图

对于上述框架,本文研究了基于STM32的车牌识别系统的研究与实现。本文从网上和书籍中阅读了大量关于车牌识别和字符识别算法的文献,还对图像处理技术进行了深入研究,对不同方式进行车牌识别做了功课,对STM32芯片比较熟悉。当摄像头对车牌图像进行处理后,再经过图像处理技术,对采集的车牌信息进行识别处理,成功识别到车牌时,车牌号码信息会被传输并显示到TFT显示屏

车牌区域的识别以及字符分割,均运用依据跳变点划线的手段来判定字符边界与车牌区域。当摄像头完成图像采集后,随即展开扫描检测,获取摄像头像素数值。针对屏幕纵向 240 方向跳变点的显示点数展开分析,以此来解析跳变点情况;在车牌测定方面,则基于屏幕横向 320 方向跳变点的显示状况加以剖析。待完成两个方向的分析工作后,便着手进行字符分割操作,分割完成后,即可对字符实施识别流程 。软件流程框图如图3.2所示。

图3.2 软件流程框图

图4.1   keil5开发界面

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值