基于facenet-pytorch、opencv、tkinter的人脸识别签到系统 报告+项目源码及数据库文件

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

 1. 系统概述

本系统是一个基于深度学习的人脸识别签到系统,采用Python作为主要开发语言。系统集成了人脸检测、人脸特征提取、人脸比对等核心功能。在人脸检测方面,系统使用了MTCNN(Multi-task Cascaded Convolutional Networks)模型,该模型能够准确地定位人脸位置并提供高质量的人脸对齐结果。在特征提取方面,系统采用了预训练的InceptionResnetV1模型,该模型在VGGFace2数据集上训练,能够提取出高维度的人脸特征向量,为后续的人脸比对提供可靠的特征基础。系统采用图形化界面设计,使用CustomTkinter框架开发,提供了直观、友好的用户操作体验。界面设计采用了现代化的布局和样式,包括实时预览窗口、用户信息输入区域以及功能操作按钮等组件。在数据存储方面,系统选用了MySQL数据库,通过精心设计的数据表结构,实现了用户信息、人脸特征和签到记录的高效管理。系统支持实时人脸检测和识别,能够快速响应用户操作,提供流畅的使用体验。

2. 技术架构

系统采用了多层架构设计,各个组件之间职责明确,协同工作。主要技术组件包括前端界面框架CustomTkinter (ctk),提供现代化的GUI组件和主题支持,支持自定义样式和布局,具有良好的跨平台兼容性和流畅的用户交互体验;人脸检测模块MTCNN,采用多任务级联卷积神经网络架构,具有高精度的人脸检测和关键点定位能力,实时处理性能优秀,对各种光照和角度变化具有良好的适应性;特征提取模块InceptionResnetV1,采用深度残差网络架构,使用VGGFace2预训练模型,能够生成稳定的512维特征向量,具有优秀的特征表达能力;数据库系统MySQL,提供可靠的数据持久化存储,高效的数据查询和管理功能,完善的事务支持和并发处理能力;此外还包括OpenCV、PIL等图像处理库,用于图像采集、格式转换和显示支持,以及torchvision提供的标准化和数据增强功能。

系统的数据库设计采用了两个主要数据表:人脸注册表(face_registration)和签到记录表(face_attendance)。人脸注册表包含用户的基本信息(姓名、身份证号、年级、班级)、人脸特征向量和注册时间戳,其中身份证号设置了唯一约束以防止重复注册,特征向量使用BLOB类型存储;签到记录表则记录每次签到的身份证号和时间戳信息。数据库设计考虑了数据完整性、查询效率和存储空间的优化,通过合理的索引设计和字段类型选择,确保了系统的高效运行。

3. 核心功能实现

系统的核心功能主要包括人脸检测与特征提取、人脸注册和人脸签到三个部分。在人脸检测与特征提取方面,系统初始化了MTCNN和InceptionResnetV1模型,并配置了适当的参数以确保检测的准确性和效率:

```python

# 初始化模型和设备配置

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("Running on device: {}".format(device))

resnet = InceptionResnetV1(pretrained="vggface2").eval().to(device)

mtcnn = MTCNN(

    image_size=224,

    margin=0,

    min_face_size=20,

    thresholds=[0.6, 0.7, 0.7],

    factor=0.709,

    post_process=True,

    device=device,

)

# 图像预处理转换

transf = transforms.Compose([

    transforms.ToTensor(),

    transforms.Normalize(mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]),

])

```

人脸注册流程包括数据验证、人脸采集、特征提取和数据存储四个步骤。以下是注册功能的核心实现:

```python

def register_face():

    global registering

    registering = True

    name = name_entry.get()

    id_number = id_entry.get()

    grade = grade_entry.get()

    class_ = class_entry.get()

    # 输入验证

    if not name or not id_number or not grade or not class_:

        messagebox.showwarning("输入错误", "所有字段都是必填的!")

        registering = False

        return

    # 查重验证

    cursor.execute("SELECT COUNT(*) FROM face_registration WHERE id_number = %s", (id_number,))

    if cursor.fetchone()[0] > 0:

        messagebox.showwarning("重复错误", "身份证号已经存在,请使用不同的身份证号。")

        registering = False

        return

    detection_count = 0

    last_feature_vector = None

    # 人脸采集和特征提取

    while detection_count < 20:

        if not frame_queue.empty():

            frame = frame_queue.get()

            boxes, probs = mtcnn.detect(frame)

            if boxes is not None:

                boxes = clamp_boxes(boxes, frame.shape[1], frame.shape[0])

                x1, y1, x2, y2 = [int(p) for p in boxes[0]]

                face = frame[y1:y2, x1:x2]

                face = transf(face).unsqueeze(0).to(device)

               

                with torch.no_grad():

                    feature_vector = resnet(face).detach().cpu().numpy().flatten()

                    last_feature_vector = feature_vector

                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)

                detection_count += 1

            if not register_frame_queue.full():

                register_frame_queue.put(frame)

```

人脸签到流程则包括身份验证、实时识别和结果处理三个步骤。以下是签到功能的核心实现:

```python

def sign_in():

    global is_sign_in

    is_sign_in = True

    id_number = id_entry_.get()

    if not id_number:

        messagebox.showwarning("输入错误", "身份证号是必填的!")

        is_sign_in = False

        return

    # 获取注册特征向量

    cursor.execute("SELECT feature_vector, name FROM face_registration WHERE id_number = %s", (id_number,))

    result = cursor.fetchone()

    if result is None:

        messagebox.showwarning("错误", "身份证号不存在,请检查输入。")

        is_sign_in = False

        return

    registered_feature_vector, registered_name = result

    registered_feature_vector = np.frombuffer(registered_feature_vector, dtype=np.float32)

    detection_count = 0

    while detection_count < 20:

        if not frame_queue.empty():

            frame = frame_queue.get()

            boxes, _ = mtcnn.detect(frame)

            if boxes is not None:

                boxes = clamp_boxes(boxes, frame.shape[1], frame.shape[0])

                x1, y1, x2, y2 = [int(p) for p in boxes[0]]

                face = frame[y1:y2, x1:x2]

                face = transf(face).unsqueeze(0).to(device)

               

                with torch.no_grad():

                    current_feature_vector = resnet(face).detach().cpu().numpy().flatten()

                # 计算相似度

                similarity = np.dot(registered_feature_vector, current_feature_vector) / (

                    np.linalg.norm(registered_feature_vector) * np.linalg.norm(current_feature_vector)

                )

               

                if similarity > 0.85:

                    cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)

                    cv2.putText(frame, f"{registered_name} ({similarity:.2f})",

                              (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

                    detection_count += 1

                else:

                    cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)

                    cv2.putText(frame, f"Unknown ({similarity:.2f})",

                              (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)

            if not sign_frame_queue.full():

                sign_frame_queue.put(frame)

```

 4. 用户界面设计

系统界面采用分区设计,主要分为左侧区域和右侧功能区。左侧区域用于显示实时摄像头画面,包括人脸检测框的实时绘制和识别结果的实时显示。右侧功能区采用标签页形式,包含签到、注册和签到记录三个主要功能页面。签到标签页提供身份证号输入框、签到按钮和状态提示区域;注册标签页包含完整的个人信息输入区域、注册按钮和操作提示区域;签到记录标签页则显示历史签到记录,支持自动更新和查询筛选功能。整个界面设计注重用户体验,操作流程简单直观,反馈信息清晰及时。

5. 性能优化

系统在性能方面进行了全面的优化设计。在图像处理优化方面,采用队列管理机制控制帧缓存,有效防止内存溢出问题,同时确保系统的实时性能;在图像预处理环节,实现了图像尺寸标准化、光照归一化和数据增强处理,提高了识别的准确性和稳定性。在并发处理方面,系统采用多线程设计,分别设置了视频采集线程、界面更新线程和数据处理线程,通过队列实现线程间的安全通信和数据同步,并建立了完善的异常处理机制,确保系统运行的稳定性。此外,系统还对数据库访问进行了优化,包括合理的索引设计、查询语句优化和连接池管理,显著提升了数据处理效率。

6. 安全性考虑

系统在安全性设计方面进行了全面考虑。在数据安全方面,实现了特征向量的加密存储、严格的数据库访问控制和定期数据备份机制;在数据传输过程中,采用加密传输确保数据安全,并实现了完善的会话管理和访问权限控制。在识别安全方面,系统实现了多帧验证机制、活体检测功能和相似度阈值控制,有效防止欺骗行为;同时建立了错误重试机制、异常日志记录和实时告警功能,确保系统能够及时发现和处理异常情况。系统还实现了完整的审计日志功能,记录所有关键操作,便于后期追踪和分析。

7. 系统限制和改进方向

当前系统存在一些限制,主要包括硬件方面的单摄像头支持、本地处理模式和较高的计算资源要求,以及功能方面的固定阈值判断、简单的签到记录和有限的数据分析能力。针对这些限制,系统的改进方向主要包括三个方面:功能扩展、性能提升和用户体验优化。在功能扩展方面,计划添加多摄像头支持、开发云端部署方案和移动端接入功能;在性能提升方面,将进行模型优化、实现分布式处理和引入缓存机制;在用户体验方面,将进行界面美化、操作流程简化和功能定制化设计。这些改进将显著提升系统的实用性和可扩展性。

8. 总结

本系统通过整合现代深度学习技术和传统软件工程方法,实现了一个功能完整、性能可靠的人脸识别签到系统。系统在实际应用中展现出良好的识别准确率和运行稳定性,为用户提供了便捷的签到解决方案。通过合理的架构设计和技术选型,系统具备了良好的可扩展性和维护性,为后续功能扩展和性能优化提供了坚实的基础。系统的主要特点包括实时的人脸检测和识别能力、友好的图形用户界面、可靠的数据存储机制、高效的并发处理能力和完善的错误处理机制。

在未来的开发中,系统将继续优化现有功能,并根据实际应用需求,逐步实现更多高级功能。计划重点改进的方向包括提高识别准确率、增强系统安全性、优化用户体验、扩展数据分析能力等。同时,将考虑引入深度学习模型的在线更新机制,使系统能够通过持续学习不断提高识别性能。此外,还将开发更多的定制化功能,以满足不同场景下的应用需求,进一步提升系统的实用价值。通过这些持续的优化和功能扩展,系统将能够更好地满足实际应用需求,为用户提供更优质的服务。

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值