LinearAlgebraMIT_11_MatrixSpace/Rank==1‘sMatrix/SmallWorldGraph

本文探讨了矩阵空间的定义,包括子空间的构成及其运算性质,重点介绍了对称矩阵、上三角矩阵和对角矩阵的关系。同时,提及了秩的概念以及如何通过秩为1的矩阵分解来理解矩阵运算。最后,文章还提及了将图论中的小世界图概念应用到实际问题中,如社交网络的连接性分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

x.1 矩阵空间

向量空间定义:满足加法和数乘的封闭性。就类似向量空间一样,也存在着矩阵空间的定义。举个例子,例如所有的3x3的矩阵构成的矩阵空间M,它的纬度就是9,如[1, 0, …], [0, 1, …]。对于M中所有对称矩阵组成子空间N1,维度为6。M中所有上三角矩阵组成子空间N2,维度为6。M中所有对角矩阵组成子空间N3,维度为3。

在这里插入图片描述

我们对于矩阵子空间,往往更在乎的是交∩,加+运算,而并不在意并∪运算,因为∩,+更有意义。例如对称矩阵N1和上三角矩阵N2的∩构成了对角矩阵N3,而对称矩阵N1和上三角矩阵N2的+构成了全部的空间M。所以我们得到一个朴素的道理,对于两个矩阵子空间,他俩维度相加存在如下定理,

在这里插入图片描述

与微分方程联系,举一个2阶判断维度的例子,

请添加图片描述

x.2 秩为1的矩阵

任何秩为1的矩阵都可以看做一列乘以一行,而秩不为1的矩阵可以通过若干秩为1的矩阵相加,再将秩为1的矩阵看做一列乘以一行。我们需要具备上面的分解的思想,如同搭积木一样。

注意,我们需要将对秩为1的矩阵A的分解思想和对矩阵A, B相乘等于线性组合的思想分离开,

在这里插入图片描述

x.3 小世界图

即将图论思想引入,例如如果人代表一个节点,而人和人的关系是线,则世界有多小,实际上最多通过6条边你便可以联系上世界上所有的人,图={节点,边}

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值