conda_学习

参考:

  • Anaconda 官网教程 https://freelearning.anaconda.cloud/get-started-with-anaconda/18202
  • conda配置虚拟环境/conda环境迁移/python环境迁移 https://blog.csdn.net/qq_43369406/article/details/127140839

环境:

  • macOS 15.2
  • Anaconda Navigator 2.4.2

x.1 conda和docker区别

Conda: 一个包管理和环境管理工具,主要用于 Python 和 R 的科学计算与数据科学工作流。主要用于创建隔离的Python或R环境,解决依赖关系,防止依赖冲突

Docker: 一个基于容器技术的虚拟化平台,用于创建、部署和运行隔离的操作系统级环境。很方便的整个操作系统的环境迁移

x.2 Conda的workflow

Conda的workflow如下,永远都是:

创建虚拟环境
激活虚拟环境
安装库
使用JupyterLab进行测试
退出虚拟环境
删除虚拟环境
# 查看
conda --version		# 查看conda版本
conda env list		# 查看虚拟环境有哪些

# 创建新env
conda create --name env_cp311_example python=3.11

# 进入env
conda activate env_cp311_example

# 使用conda装包,并指定conda装包的channel为conda-forge
conda install -c conda-forge jupyterlab

# 启动jupyterlab
jupyter-lab	# 随后,终端中会显示一个本地服务器地址(通常是 http://localhost:8888)

# 使用pip装包,并指定pypi装包的渠道为豆瓣源
pip install python-bioformats javabridge 	# 配合terminal export一下proxy使用
pip install python-bioformats javabridge -i https://pypi.tuna.tsinghua.edu.cn/simple	# 清华源
pip install python-bioformats javabridge -i https://pypi.douban.com/simple/				# 豆瓣源
pip install python-bioformats javabridge -i https://mirrors.aliyun.com/pypi/simple/		# 阿里源
pip install python-bioformats javabridge -i https://pypi.mirrors.ustc.edu.cn/simple/	# 中科大

# 使用requirements.txt装包
pip install -r requirements.txt

# 查看conda和pypi各装了什么包
conda list

# 退出虚拟环境
conda deactivate

# 删除虚拟环境
conda env remove --name env_cp311_example

在这里插入图片描述

x.2.1 创建虚拟环境

在这一步开始前,我们首先需要查看我们的Conda是否安装成功,

conda --version	# 查看conda版本
conda env list		# 查看虚拟环境有哪些

需要注意的是NEVER USE IN BASE.

接下来创建新的虚拟环境:# 使用–name指定env的名字,其中env是环境,cp39是cpython=3.9,example是project name;python=3.9是指定python版本。

conda create --name env_cp39_example python=3.9	

在这里插入图片描述

x.2.2 激活环境,安装库并测试

我们使用activate来激活conda中的env,

conda activate env_cp39_example

通过激活新的env我们能看见前面小括号内的名称变了,从(base)变成了(env_cp39_example);接下俩你安装的所有库都是在这个环境中。

在这里插入图片描述

使用install来安装新的环境:-c是指定从哪个channel进行安装,conda-forge是社区驱动的conda包仓库;jupyterlab是安装的具体软件包名称,用于可视化编程;

conda install -c conda-forge jupyterlab

在这里插入图片描述

可以使用list来看该环境中一共安转了哪些包,其中显示的channel是指你从那个渠道下载下来的,常见的用pip安装的channel是pypi,conda安装的有诸如conda-forge等;下图中左为base,右边是创建的venv;

在这里插入图片描述

conda list

我们在安装完jupyterlab后推荐使用jupyterlab来进行简单的测试和数据分析,在terminal中输入如下命令使用jupyter来分析,

jupyter-lab

退出jupyter-lab只需要在terminal中control+c便可,

x.2.3 退出环境与删除虚拟环境

退出环境使用deactivate

conda deactivate

在这里插入图片描述

删除虚拟环境用remove

# 删除虚拟环境
# conda env remove --name [your env name]
conda env remove --name env_cp39_example

x.3 conda环境迁移

x.3.1 云环境备份

只有支持使用桌面版的"Anaconda Navigator"才可以使用云环境备份来迁移;

conda和其他很多软件一样支持云存储,我们使用anaconda navigator进行备份,登录账号后选择back up便可以将环境备份上云;当我们使用别的操作系统(windows,linux桌面,mac)的时候直接安装navigator将conda的环境迁移便可。

需要注意的是windows的env直接移动到mac是不可行的,因为操作系统不一样。

在这里插入图片描述

x.3.2 Linux用命令行进行环境迁移

参考 “conda配置虚拟环境/conda环境迁移/python环境迁移” https://blog.csdn.net/qq_43369406/article/details/127140839

x.4 Conda环境迁移的workflow

# 进入需要导出的Conda环境
conda activate env_cp311_ymz

# 生成Conda依赖: environment.yml
conda env export > environment.yml
# 将文件分为Conda需要安装的部分和Pip需要安装的部分(这样是为了避免迁移的时候,base的pip装了environment.yml中的pip库)
# 将environment.yml中的pip删除(直到删除到-pip:为止,-pip保留,如下图)

# 生成pip依赖: requirements.txt
pip freeze > requirements.txt 			# 生成requirements.txt

# 去另外一个环境进行迁徙
# 安装Conda
conda env create -f environment.yml		# 可以跟-n来指定conda的名字

# 安装pip依赖(采用轮流注释法安装)
pip install -r requirements.txt 		# 从requirements.txt安装依赖

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值