关于预训练方式的一些思考

本文探讨了图像领域预训练模型如何通过学习底层特征加速任务收敛,并介绍了预训练在自然语言处理中的类似应用,如BERT模型。重点提到了何凯明2021年的文章,讨论了图像领域的Masked Autoencoders及其在预训练中的作用。
摘要由CSDN通过智能技术生成

图像领域的预训练方式

在图像之中,一些底层的特点可以使用网络的一些关键底层进行特征的学习和训练,比如每一张图片都会有相关的棱角,或者底色之类的东西也就是图像中的共有基础特征点,可以使用深层网络对这些不关乎具体任务的特征进行编码学习。比如以下图片:
在这里插入图片描述
比如在目标检测和分类任务中,图片中涉及到的背景颜色和相关的色调等特征,跟具体任务关系不大,可以使用预训练语言模型进行特征的识别和图像的特征建模。
将大规模的模型预训练完成后,可以便于具体任务的参数初始化,优化初始化过程,加速模型的收敛。

自然语言处理中的预训练

自然语言处理中的预训练模型的发展,其实在某种程度上借鉴了图像识别中的预训练模型方式,即冻结一个大型模型中的某些参数,或对某些参数进行微调。
nlp领域的预训练模型,比如BERT模型就使用了这一种想法,通过大规模的语料,关注到每一条文本的基本语义语法特征信息,从一个较大的层面关注句子所表达的意思,然后再接上后续模型,在具体任务上进行模型的微调处理。

关于图像领域预训练模型的技术

关注何凯明,2021年的一篇文章《Masked Autoencoders Are Scalable Vision Learners》,其预训练图像mask方法,膜拜

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值