Leetcode 72编辑距离 C++

本文介绍了一种使用动态规划解决字符串编辑距离问题的方法。通过构建动态规划矩阵,该算法可以高效地计算出将一个字符串转换为另一个字符串所需的最少操作数,包括插入、删除和替换字符。文章详细展示了算法的实现过程,包括初始化边界条件和核心递推公式。
摘要由CSDN通过智能技术生成

思路:动态规划。
具体规律及解释 参考http://www.cnblogs.com/grandyang/p/4344107.html

class Solution {
public:
    int minDistance(string word1, string word2) {
        int n1=word1.size(),n2=word2.size();
        int dp[n1+1][n2+1];
        dp[0][0]=0;
        for(int i=1;i<=n2;++i) dp[0][i]=i;
        for(int i=1;i<=n1;++i) dp[i][0]=i;
        for(int i=1;i<=n1;++i)
            for(int j=1;j<=n2;++j)
            {
                if(word1[i-1]==word2[j-1]) dp[i][j]=dp[i-1][j-1];
                else dp[i][j]=min(dp[i][j-1],min(dp[i-1][j-1],dp[i-1][j]))+1;
            }
        return dp[n1][n2];
        
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值