Leetcode132 分割回文串II C++

思路:动态规划
用一个变量j来从0遍历到i,这样就可以把区间 [0, i] 分为两部分,[0, j-1] 和 [j, i],那么我们已经知道区间 [0, j-1] 的最小分割数 dp[j-1],因为我们是从前往后更新的,而 j 小于等于 i,所以 dp[j-1] 肯定在 dp[i] 之前就已经算出来了。这样我们就只需要判断区间 [j, i] 内的子串是否为回文串了,是的话,dp[i] 就可以用 1 + dp[j-1] 来更新了。
另外写了一个判断字符串从start到end,是否是回文串的函数。
如下面代码所示,虽然可以通过,但是执行时间和内存消耗太大了。

class Solution {
public:
    int minCut(string s) {
       if(s.empty()) return 0;
        int n=s.size();
        vector<vector<bool> > p;
        int dp[n];
        for(int i=0;i<s.size();++i)
        {
            dp[i]=i;
            for(int j=0;j<=i;++j)
            {
                if(ishuiwen(s,j,i))
                {
                    dp[i]=(j==0)?0:min(dp[i],dp[j-1]+1);
                }
            }
        }
        return dp[n-1];
    }
 bool ishuiwen(string s,int start,int end)
 {
     while(start<end)
     {
         if(s[start]!=s[end]) return false;
         ++start,--end;
     }
     return true;
 }
};

参考http://www.cnblogs.com/grandyang/p/4271456.html
同样用利用动态规划,维护另外一个二维数组,记录从j到i的字符串是否为回文串。递推关系式为p[i][j] = (s[i] == s[j]) && p[i+1][j-1]
代码如下`
这样执行时间和内存消耗大大减小。

class Solution {
public:
    int minCut(string s) {
        if (s.empty()) return 0;
        int n = s.size();
        vector<vector<bool>> p(n, vector<bool>(n));
        vector<int> dp(n);
        for (int i = 0; i < n; ++i) {
            dp[i] = i;
            for (int j = 0; j <= i; ++j) {
                if (s[i] == s[j] && (i - j < 2 || p[j + 1][i - 1])) {
                    p[j][i] = true;
                    dp[i] = (j == 0) ? 0 : min(dp[i], dp[j - 1] + 1);
                }
            }
        }
        return dp[n - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值