思路:动态规划
用一个变量j来从0遍历到i,这样就可以把区间 [0, i] 分为两部分,[0, j-1] 和 [j, i],那么我们已经知道区间 [0, j-1] 的最小分割数 dp[j-1],因为我们是从前往后更新的,而 j 小于等于 i,所以 dp[j-1] 肯定在 dp[i] 之前就已经算出来了。这样我们就只需要判断区间 [j, i] 内的子串是否为回文串了,是的话,dp[i] 就可以用 1 + dp[j-1] 来更新了。
另外写了一个判断字符串从start到end,是否是回文串的函数。
如下面代码所示,虽然可以通过,但是执行时间和内存消耗太大了。
class Solution {
public:
int minCut(string s) {
if(s.empty()) return 0;
int n=s.size();
vector<vector<bool> > p;
int dp[n];
for(int i=0;i<s.size();++i)
{
dp[i]=i;
for(int j=0;j<=i;++j)
{
if(ishuiwen(s,j,i))
{
dp[i]=(j==0)?0:min(dp[i],dp[j-1]+1);
}
}
}
return dp[n-1];
}
bool ishuiwen(string s,int start,int end)
{
while(start<end)
{
if(s[start]!=s[end]) return false;
++start,--end;
}
return true;
}
};
参考http://www.cnblogs.com/grandyang/p/4271456.html
同样用利用动态规划,维护另外一个二维数组,记录从j到i的字符串是否为回文串。递推关系式为p[i][j] = (s[i] == s[j]) && p[i+1][j-1]
代码如下`
这样执行时间和内存消耗大大减小。
class Solution {
public:
int minCut(string s) {
if (s.empty()) return 0;
int n = s.size();
vector<vector<bool>> p(n, vector<bool>(n));
vector<int> dp(n);
for (int i = 0; i < n; ++i) {
dp[i] = i;
for (int j = 0; j <= i; ++j) {
if (s[i] == s[j] && (i - j < 2 || p[j + 1][i - 1])) {
p[j][i] = true;
dp[i] = (j == 0) ? 0 : min(dp[i], dp[j - 1] + 1);
}
}
}
return dp[n - 1];
}
};