数据结构之二叉树

数据结构之二叉树

emmmmmm复习一下二叉树的知识

  • 基本知识

一、树的定义

树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。
在这里插入图片描述

树具有的特点有:

(1)每个结点有零个或多个子结点

(2)没有父节点的结点称为根节点

(3)每一个非根结点有且只有一个父节点

(4)除了根结点外,每个子结点可以分为多个不相交的子树。

树的基本术语有:

若一个结点有子树,那么该结点称为子树根的“双亲”,子树的根称为该结点的“孩子”。有相同双亲的结点互为“兄弟”。一个结点的所有子树上的任何结点都是该结点的后裔。从根结点到某个结点的路径上的所有结点都是该结点的祖先。

结点的度:结点拥有的子树的数目

叶子结点:度为0的结点

分支结点:度不为0的结点

树的度:树中结点的最大的度

层次:根结点的层次为1,其余结点的层次等于该结点的双亲结点的层次加1

树的高度:树中结点的最大层次

森林:0个或多个不相交的树组成。对森林加上一个根,森林即成为树;删去根,树即成为森林。

这些都是书上的基本概念

二、二叉树

1、二叉树的定义

二叉树是每个结点最多有两个子树的树结构。

五种基本形态:二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。
在这里插入图片描述

2、二叉树的性质

  • 性质1:二叉树第i层上的结点数目最多为2i-1(i>=1)
  • 性质2:深度为k的二叉树至多有2k-1个结点(k>=1)
  • 性质3:包含n个结点的二叉树的高度至少为(log2n)+1
  • 性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1

三、满二叉树、完全二叉树和二叉查找树

1、满二叉树

定义:高度为h,并且由2h-1个结点组成的二叉树,称为满二叉树

在这里插入图片描述
2、完全二叉树

定义:一棵二叉树中,只有最下面两层结点的度可以小于2,并且最下层的叶结点集中在靠左的若干位置上,这样的二叉树称为完全二叉树。

特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。显然,一棵满二叉树必定是一棵完全二叉树,而完全二叉树未必是满二叉树。

在这里插入图片描述

3、二叉查找树

定义:二叉查找树又被称为二叉搜索树。设x为二叉查找树中的一个结点,x结点包含关键字key,结点x的key值计为key[x]。如果y是x的左子树中的一个结点,则key[y]<=key[x];如果y是x的右子树的一个结点,则key[y]>=key[x]

在这里插入图片描述
二叉查找树的基本性质:

  1. 若任意结点的左子树不空,则左子树上所有结点的值均小于它的根结点的值。
  2. 任意结点的右子树不空,则右子树上所有结点的值均大于它的根结点的值。
  3. 任意结点的左、右子树也分别为二叉查找树。
  4. 没有键值相等的结点。
  • 代码实现

Node:

package priv.qcy.tree;

public class Node {
	public int value;// 数据域
	public Node left, right;

	public Node(Node left, Node right, int value) {
		super();
		this.value = value;
		this.left = left;
		this.right = right;
	}

	public Node() {
	}

	public Node(int value) {
		this(null, null, value);
	}

	public int getValue() {
		return value;
	}

	public void setValue(int value) {
		this.value = value;
	}

	public Node getLeft() {
		return left;
	}

	public void setLeft(Node left) {
		this.left = left;
	}

	public Node getRight() {
		return right;
	}

	public void setRight(Node right) {
		this.right = right;
	}

}

BinarySortTree:

package priv.qcy.tree;

import java.util.Stack;

public class BinarySortTree {

	private Node root = null;

	/** 查找二叉排序树中是否有key值 */
	public boolean searchBST(int key) {
		Node pNode = root;
		while (pNode != null) {
			if (key == pNode.getValue()) {
				return true;

			} else if (key < pNode.getValue()) {
				pNode = pNode.getLeft();

			} else {
				pNode = pNode.getRight();
			}

		}
		return false;

	}

	/** 向二叉排序树中插入结点 */
	public void insertBST(int key) {
		Node pNode = root;
		Node prev = null;
		while (pNode != null) {
			prev = pNode;
			if (key < pNode.getValue()) {
				pNode = pNode.getLeft();
			} else if (key > pNode.getValue()) {
				pNode = pNode.getRight();
			} else {
				return;
			}
		}

		if (root == null) {
			root = new Node(key);

		} else if (key < prev.getValue()) {
			prev.setLeft(new Node(key));

		} else {
			prev.setRight(new Node(key));
		}

	}

	/**
	 * 删除二叉排序树中的结点 分为三种情况:(删除结点为*p ,其父结点为*f) (1)要删除的*p结点是叶子结点,只需要修改它的双亲结点的指针为空
	 * (2)若*p只有左子树或者只有右子树,直接让左子树/右子树代替*p (3)若*p既有左子树,又有右子树
	 * 用p左子树中最大的那个值(即最右端S)代替P,删除s,重接其左子树
	 */
	public void deleteBST(int key) {
		deleteBST(root, key);
	}

	private boolean deleteBST(Node node, int key) {
		if (node == null)
			return false;
		else {
			if (key == node.getValue()) {
				return delete(node);
			} else if (key < node.getValue()) {
				return deleteBST(node.getLeft(), key);
			} else {
				return deleteBST(node.getRight(), key);
			}
		}
	}

	private boolean delete(Node node) {
		Node temp = null;
		/**
		 * 右子树空,只需要重接它的左子树 如果是叶子结点,在这里也把叶子结点删除了
		 */
		if (node.getRight() == null) {
			temp = node;
			node = node.getLeft();
		}
		/** 左子树空, 重接它的右子树 */
		else if (node.getLeft() == null) {
			temp = node;
			node = node.getRight();
		}
		/** 左右子树均不为空 */
		else {
			temp = node;
			Node s = node;
			/** 转向左子树,然后向右走到“尽头” */
			s = s.getLeft();
			while (s.getRight() != null) {
				temp = s;
				s = s.getRight();
			}
			node.setValue(s.getValue());
			if (temp != node) {
				temp.setRight(s.getLeft());
			} else {
				temp.setLeft(s.getLeft());
			}
		}
		return true;
	}

	/**
	 * 中序非递归遍历二叉树 获得有序序列
	 */

	public void dlrTraverse() {

		Stack<Node> stack = new Stack<Node>();
		Node node = root;
		while (node != null || !stack.isEmpty()) {
			while (node != null) {

				stack.push(node);
				node = node.getLeft();

			}
			node = stack.pop();
			System.out.print(node.getValue() + "  ");
			node = node.getRight();

		}
		System.out.println();

	}

	public static void main(String[] args) {
		BinarySortTree bst = new BinarySortTree();
		/** 构建的二叉树没有相同元素 */
		int[] num = { 45, 12, 37, 24, 3, 53, 100, 61, 55, 90, 78 };

		for (int i = 0; i < num.length; i++) {
			bst.insertBST(num[i]);
		}

		bst.dlrTraverse();
		System.out.println(bst.searchBST(37));

		System.out.println("-------------------------------");
		bst.deleteBST(12);
		bst.dlrTraverse();
		System.out.println(bst.searchBST(12));
	}

}

作为个人学习复习记录,方便复习!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值