RuntimeWarning: overflow encountered in power

在使用Sigmoid函数时可能会遇到数值溢出的问题,尤其是在输入为极端负数时。本文详细分析了溢出的原因,并提供了一个优化版的Sigmoid函数实现来解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

在使用sigmoid函数的时候遇到了这个错误:

  yyh=1/(1+np.power(np.e,-yh))

在这里插入图片描述
问题分析:

溢出就是数太大,计算机已经表示不了了。我们当然会想,怎么会溢出呢?因为我们注意到这里使用了指数,指数的增长速度是非常块的, e 1000 e^{1000} e1000这个数估计计算机都表示不了,因为太大了。

我们猜测:是否是我们的 y h yh yh有一个非常小的负数,然后取负号就变成特别大的正数,然后指数一下就溢出。

在这里插入图片描述
果然如此,这里相当于计算了 e 1151 e^{1151} e1151,所以当然会溢出了。

理论分析:

y = 1 1 + e − x y=\frac{1}{1+e^{-x}} y=1+ex1

当x为正数,很大的时候,不会溢出,因为 e − x e^{-x} ex趋近于0,没什么好溢出的。
当x为负数,很小的时候,会溢出,如上面的情况。

所以我们修正一下我们的sigmoid函数,不要直接上面这么用。将

  yyh=1/(1+np.power(np.e,-yh))

换成:

def sigmoid(x):
    if x>=0:      
        return 1.0/(1+np.power(np.e,-x))
    else:#为负数的时候,对sigmoid函数的优化,避免了出现极大的数据溢出
        return np.power(np.e,x)/(1+np.power(np.e,x))
yyh=sigmoid(yh)

注意:上面并没有修改sigmoid函数,只是把公式换了一种等价描述,但是却克服了计算机会溢出的缺点。

即:

y = 1 1 + e − x = e x e x + 1 y=\frac{1}{1+e^{-x}}=\frac{e^{x}}{e^{x}+1} y=1+ex1=ex+1ex

但是当x为正的时候,不要使用第2种公式形式,不然溢出。当x为负的时候,才使用,但不使用第一种公式形式,这就是优化的sigmoid函数(仅仅在计算机中才需要优化,数学中是完全等价的)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值