级数(函数项),完备正交函数集,傅里叶级数

函数项级数

μ n ( x ) , n = 0 , 1 , ⋯ \mu_n(x),n=0,1,\cdots μn(x),n=0,1, 为定义在某实数集合X上的函数序列,称:
在这里插入图片描述
为函数项级数。

特殊地,我们若取每一项函数都是多项式,则称其为幂级数。例如:在这里插入图片描述

完备正交函数集

举两个比较常见的完备正交函数集:

在区间 [ t 0 , t 0 + T ] [t_0,t_0+T] [t0,t0+T]上,设 w = 2 π / T w=2\pi /T w=2π/T

  1. 下列函数在该区间是完备正交函数集:

    { 1 , cos ⁡ ( n w t ) , sin ⁡ ( n w t ) , n = 1 , 2 , ⋯   } \{1,\cos(nwt),\sin(nwt),n=1,2,\cdots\} {1,cos(nwt),sin(nwt),n=1,2,}

  2. 下列函数在该区间也是完备正交函数集:
    { e j n w t , n = 0 , − 1 , + 1 , ⋯   } \{e^{jnwt},n=0,-1,+1,\cdots \} {ejnwt,n=0,1,+1,}

一些补充:

两个函数正交这个概念来源于线性空间中的欧式空间,其空间中的元素就是定义在这个区间上的所有连续函数,且对于其中的两个函数 f ( t ) , g ( t ) f(t),g(t) f(t),g(t),其内积定义为 ( f ( t ) , g ( t ) ) = ∫ t 0 t 0 + T f ( t ) g ( t ) d t (f(t),g(t))=\int_{t_0}^{t_0+T}f(t)g(t) dt (f(t),g(t))=t0t0+Tf(t)g(t)dt,而两个函数正交即意味着这两个函数内积为0。

可以验证,无论是1还是2,其任意两个不同元素内积都为0,相同则不为0,因而其是正交的。

而这种函数线性空间,由于是无限维的,所以完备基中有无数个函数,正交化之后仍然是无数个。

另外,由于第2个完备正交集的原因,我们可以把这个空间继续称作酉空间。而且,我们利用欧拉公式可以发现:2中的所有元素可以1这个基表示,同样1中的所有元素可以被2这个基表示,也就是说这两个基是等价的。

所以我们只要证明第一个确实是完备的基,那么两个都是完备的基了。完备是因为现在已经有了无限个两两正交的函数了,已经是无限了,无限当然是能够线性组合并表达你想要的任何函数啦。

傅里叶级数

傅里叶级数就是先选取一个完备正交函数集 { ϕ k ( x ) ∣ k = 0 , 1 , ⋯   } \{\phi_k(x)|k=0,1,\cdots\} {ϕk(x)k=0,1,},然后线性组合,此时称为广义傅里叶级数。如下:

∑ k = 0 ∞ a k ϕ k ( t ) \sum_{k=0}^{\infty}a_k\phi_k(t) k=0akϕk(t)

注意:
1.上面k的取值有的地方是 [ 0 , ∞ ] [0,\infty] [0,],有的是 ( − ∞ , ∞ ) (-\infty,\infty) (,),甚至还有其他的,都无所谓,一般完备正交函数集都是无穷的,所以只要是无穷就行了。
2.而我们平常所说的正宗傅里叶级数一般指完备正交函数集是上一节中的三角函数。

所以,问题来了,我们找了一个完备正交函数集(除了第二节中列举的两个,其实还有Legendre多项式等等)之后,对于一个函数 f ( t ) f(t) f(t),如何将其进行上述的傅里叶展开呢?即如何确定下述等式的系数 a k a_k ak呢?

f ( t ) = ∑ k = 0 ∞ a k ϕ k ( t ) f(t)=\sum_{k=0}^{\infty}a_k\phi_k(t) f(t)=k=0akϕk(t)

这里先要声明的是,上述等号不一定成立。因为级数是否收敛我们还不确定呢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值