使用sklearn进行kmeans实战

本文通过简洁的代码实例介绍了如何使用sklearn库快速上手KMeans聚类算法。首先,创建了一个二维的6点数据集,然后用KMeans进行聚类,展示了如何获取聚类中心和各个点的类别,并对新数据点进行预测。通过这个简单的教程,读者可以快速掌握KMeans的基本用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

很多人写得太复杂了,更多人谈到sklearn的时候,早就知道了kmeas的原理,只是想快速上手而已。

代码

数据

我们知道,kmeans是无监督,没有标签。所以,我们的数据如下:

import numpy as np
X = np.array([[1, 2], [1, 4], [1, 0],
           [10, 2], [10, 4], [10, 0]])

6个数据点,每一个点是二维的。我们使用kmeas进行聚类。

代码

导入包

from sklearn.cluster import KMeans
#指定要聚多少个类别,以及拟合我们的数据X。
kmeans = KMeans(n_clusters=2, random_state=0).fit(X)#
print(kmeans.cluster_centers_)
#输出聚类中心,我们是两个类,所以有两个中心。
print(kmeans.labels_)
#由于两个类别的中心已经知道,所以这6个点的类别当然也知道,看距离谁最近即可。
print(kmeans.predict([[0, 0], [12, 3]]))
#预测新的2个点的类别。和上面同理。

是不是很简单,核心已经说完了。


完结撒花

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值