【入门】最大公约数和最小公倍数问题

博客介绍了一种解决寻找两个正整数,其最大公约数为x0,最小公倍数为y0的问题的方法。通过分析,得出当k1和k2互质时存在两组解,并提供了两种不同的代码实现思路,一种可能会在数据较大时超时,另一种则更适用于处理大数情况。
摘要由CSDN通过智能技术生成

题目链接

题目描述

输入2个正整数x0​,y0​(2≤x0​<100000,2≤y0​<=1000000),求出满足下列条件的P,QP,Q的个数

条件:

  1. P,Q是正整数

  2. 要求P,Q以x0​为最大公约数,以y0​为最小公倍数.

试求:满足条件的所有可能的2个正整数的个数.

输入

2个正整数x0​,y0​

输出

1个数,表示求出满足条件的P,Q的个数

输入样例

3 60

输出样例

4

分析

最大公约数是x,所以设这两个数为x * k1 , x * k2 (其中k1,k2互质),x * k1 * k2 = y , 所以 k1 * k2 = y / x (如果y / x 除不尽意味着没答案)

然后只要穷举k1 , k2 的值即可(k1 * k2 = y / x 是轮换式,不妨设 k1 < k2 , 然后从1 ~ floor(sqrt(y0 / x0))穷举)

如果k1,k2 互质 , 那就说明找到 2 组解了,将 sum += 2 。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值