【状压DP】【NOI2001】炮兵阵地

20 篇文章 2 订阅
该博客介绍了如何利用动态规划(状压DP)解决NOI2001竞赛中关于炮兵阵地的布局问题。在给定的N*M网格地图上,目标是在不影响炮兵安全的情况下部署最多数量的炮兵。博客内容包括问题描述、输入输出格式、解题思路、状态设计和状态转移方程,旨在帮助读者理解如何在有限的空间内优化部署策略。
摘要由CSDN通过智能技术生成

P2704

题目描述

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:

如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。

输入格式:

第一行包含两个由空格分割开的正整数,分别表示N和M;

接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。

输出格式:

仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。

输入样例

5 4
PHPP
PPHH
PPPP
PHPP
PHHP

输出样例

6

分析

一看就是妥妥的状压DP

通过观察我们不难发现,当前行的状态变化会影响到上一行和上上行的状态,如果粗暴一点的话,我们可以将状态设计成四维第一维行数,第二维当前行状态,第三维上一行状态,第四维上上行状态。

这样设计状态看上去是没什么问题的,但是仔细想想我们会发现第四维其实是没有必要存在的,设计成三维就好。

这样一来,dp[ i ][ j ][ k ]就表示第i行的状态为j,第i - 1行的状态为k时最多能放下的炮兵数。

状态转移方程:

dp[当前行][当前行状态][上一行状态] = max(dp[当前行][当前行状态][上一行状态],dp[上一行][上一行状态][上上行状态] + 当前行状态最多能放下的炮兵数)

代码

#include<bits/stdc++.h>
using namespace std;
int n, m;
int a[110];
int dp[110][70][70];
int s[110], g[110];
int num, ans;
char c;

int count(int x) {//计算状态x最多放下多少炮兵
    int cnt = 0, i = 1;
    while (i <= x) {
	if (x & i) cnt++;
	i <<= 1;
    }
    return cnt;
}

int main() {
    //输入 
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i++) {
	for (int j = 0; j < m; j++) {
	    cin >> c;
	    if(c == 'H') a[i] += (1 << (m - j - 1));//P为0,H为1
	}
    }
    
    //预处理 
    for (int i = 0; i < (1 << m); i++) {
	if (!(i & (i >> 1)) && !(i & (i >> 2)) && !(i & (i << 1)) && !(i & (i << 2))) {
	    s[num] = i;
	    g[num++] = count(i);
	}
    }
    
    for (int i = 0; i < num; i++) {
	if (!(a[0] & s[i])) {
	    dp[0][i][0] = g[i];
	}
    }
    for (int i = 0; i < num; i++) {
	if (!(a[1] & s[i])) {
	    for(int j = 0; j < num; j++) {
		if((!(s[i] & s[j]))) {
		    dp[1][i][j] = max(dp[1][i][j], dp[0][j][0] + g[i]);
		}
	    }
	}
    }
    
    //DP 
    for (int i = 2; i < n; i++) { //行数
	for (int j = 0; j < num; j++) { //当前行的状态
	    if (s[j] & a[i]) continue;
            for (int k = 0; k < num; k++) { //上一行的状态
		if (s[k] & a[i - 1]) continue;
		if (s[k] & s[j]) continue;
	        for (int l = 0; l < num; l++) { //上上行的状态
		    if(s[l] & a[i - 2]) continue;
		    if(s[l] & s[k]) continue;
		    if(s[l] & s[j]) continue;
		    dp[i][j][k] = max(dp[i][j][k], dp[i - 1][k][l] + g[j]);
		}
	    }
	}
    }
    
    //计算答案 
    for (int i = 0; i < num; i++) {
	for (int j = 0; j < num; j++) {
	    ans = max(ans, dp[n-1][i][j]);
	}
    }
    printf("%d", ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值