题目描述
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
输入格式:
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。
输出格式:
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
输入样例
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
输出样例
6
分析
一看就是妥妥的状压DP
通过观察我们不难发现,当前行的状态变化会影响到上一行和上上行的状态,如果粗暴一点的话,我们可以将状态设计成四维第一维行数,第二维当前行状态,第三维上一行状态,第四维上上行状态。
这样设计状态看上去是没什么问题的,但是仔细想想我们会发现第四维其实是没有必要存在的,设计成三维就好。
这样一来,dp[ i ][ j ][ k ]就表示第i行的状态为j,第i - 1行的状态为k时最多能放下的炮兵数。
状态转移方程:
dp[当前行][当前行状态][上一行状态] = max(dp[当前行][当前行状态][上一行状态],dp[上一行][上一行状态][上上行状态] + 当前行状态最多能放下的炮兵数)
代码
#include<bits/stdc++.h>
using namespace std;
int n, m;
int a[110];
int dp[110][70][70];
int s[110], g[110];
int num, ans;
char c;
int count(int x) {//计算状态x最多放下多少炮兵
int cnt = 0, i = 1;
while (i <= x) {
if (x & i) cnt++;
i <<= 1;
}
return cnt;
}
int main() {
//输入
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> c;
if(c == 'H') a[i] += (1 << (m - j - 1));//P为0,H为1
}
}
//预处理
for (int i = 0; i < (1 << m); i++) {
if (!(i & (i >> 1)) && !(i & (i >> 2)) && !(i & (i << 1)) && !(i & (i << 2))) {
s[num] = i;
g[num++] = count(i);
}
}
for (int i = 0; i < num; i++) {
if (!(a[0] & s[i])) {
dp[0][i][0] = g[i];
}
}
for (int i = 0; i < num; i++) {
if (!(a[1] & s[i])) {
for(int j = 0; j < num; j++) {
if((!(s[i] & s[j]))) {
dp[1][i][j] = max(dp[1][i][j], dp[0][j][0] + g[i]);
}
}
}
}
//DP
for (int i = 2; i < n; i++) { //行数
for (int j = 0; j < num; j++) { //当前行的状态
if (s[j] & a[i]) continue;
for (int k = 0; k < num; k++) { //上一行的状态
if (s[k] & a[i - 1]) continue;
if (s[k] & s[j]) continue;
for (int l = 0; l < num; l++) { //上上行的状态
if(s[l] & a[i - 2]) continue;
if(s[l] & s[k]) continue;
if(s[l] & s[j]) continue;
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][k][l] + g[j]);
}
}
}
}
//计算答案
for (int i = 0; i < num; i++) {
for (int j = 0; j < num; j++) {
ans = max(ans, dp[n-1][i][j]);
}
}
printf("%d", ans);
return 0;
}