Description
给定数列
a[1],a[2],…,a[n],你需要依次进行 q个操作,操作有两类:
1 i x:给定 i,x将 a[i]加上 x;
2 l r:给定 l,r,求a[l]+a[l+1]+?+a[r] 的值)。
Input
第一行包含 2 个正整数 n,q,表示数列长度和询问个数。保证 1≤n,q≤10^6 。
第二行 n 个整数a[1],a[2],…,a[n],表示初始数列。保证 ∣a[i]∣≤10^6
接下来 q 行,每行一个操作,为以下两种之一:
1 i x:给定 i,x,将 a[i] 加上 x;
2 l r:给定 l,r,
保证 1≤l≤r≤n∣x∣≤10^6
Output
对于每个 2 l r 操作输出一行,每行有一个整数,表示所求的结果。
Sample Input
3 2 1 2 3 1 2 0 2 1 3
Sample Output
6
分析
非常基础的树状数组入门题。看书去吧
代码
#include<bits/stdc++.h>
using namespace std;
long long n, q;
long long a[1000010], tree[1000010];
inline long long read() {
long long x = 0, f = 1; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
return x * f;
}
long long ask(long long x) {
long long sum = 0;
for (; x; x -= (x & -x)) sum += tree[x];
return sum;
}
void add(long long x, long long y) {
for (; x <= 1e6; x += (x & -x)) tree[x] += y;
}
int main() {
n = read(), q = read();
for (long long i = 1; i <= n; i++) a[i] = read(), add(i, a[i]);
while (q--) {
long long k = read();
if (k == 1) {
long long i = read(), x = read();
add(i, x);
} else {
long long l = read(), r = read();
printf("%lld\n", ask(r) - ask(l - 1));
}
}
}