【树状数组】【模板1】单点修改,区间查询

本文介绍了树状数组的基本概念,并通过一个包含单点修改和区间查询的操作实例来展示其应用。样例输入输出展示了树状数组如何高效地处理大规模数据。建议读者进一步学习树状数组的原理和实现细节。
摘要由CSDN通过智能技术生成

Description

给定数列 
a[1],a[2],…,a[n],你需要依次进行 q个操作,操作有两类:
1 i x:给定 i,x将 a[i]加上 x;
2 l r:给定 l,r,求a[l]+a[l+1]+?+a[r] 的值)。

Input

第一行包含 2 个正整数 n,q,表示数列长度和询问个数。保证 1≤n,q≤10^6 。
第二行 n 个整数a[1],a[2],…,a[n],表示初始数列。保证 ∣a[i]∣≤10^6
接下来 q 行,每行一个操作,为以下两种之一:
1 i x:给定 i,x,将 a[i] 加上 x;
2 l r:给定 l,r,
保证 1≤l≤r≤n∣x∣≤10^6

Output

对于每个 2 l r 操作输出一行,每行有一个整数,表示所求的结果。

Sample Input

3 2
1 2 3
1 2 0
2 1 3

Sample Output

6

分析

非常基础的树状数组入门题。看书去吧

代码

#include<bits/stdc++.h>
using namespace std;
long long n, q;
long long a[1000010], tree[1000010];
 
inline long long read() {
    long long x = 0, f = 1; char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + (ch ^ 48); ch = getchar();}
    return x * f;
}
 
long long ask(long long x) {
    long long sum = 0;
    for (; x; x -= (x & -x)) sum += tree[x];
    return sum;
}
 
void add(long long x, long long y) {
    for (; x <= 1e6; x += (x & -x)) tree[x] += y;
}
 
int main() {
    n = read(), q = read();
    for (long long i = 1; i <= n; i++) a[i] = read(), add(i, a[i]);
    while (q--) {
        long long k = read();
        if (k == 1) {
            long long i = read(), x = read();
            add(i, x);
        } else {
            long long l = read(), r = read();
            printf("%lld\n", ask(r) - ask(l - 1));
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值