算法基础课(五)<Tire树,并查集,堆>

1.Tire树

高效地存储和查找字符串集合的数据结构

在这里插入图片描述
eg:
在这里插入图片描述在这里插入图片描述

#include <iostream>
using namespace std;

const int N = 100010;

int son[N][26],cnt[N],idx;//下标是0的点,既是根节点,又是空节点
char str[N];

void insert(char str[])
{
	int p = 0;
	for(int i = 0;str[i];i++)
	{
		int u = str[i] - 'a';
		if(!son[p][u]) son[p][u] = ++idx;
		p = son[p][u];
	}
	cnt[p]++;//插入完打标记 
} 

//查询字符串出现的次数 
int query(char str[])
{
	int p = 0;
	for(int i = 0;str[i];i++)
	{
		int u = str[i] - 'a';
		if(!son[p][u]) return 0;
		p = son[p][u];
	}
	return cnt[p];
}

int main()
{
	int n;
	scanf("%d",&n);
	while(n--)
	{
		char op[2];
		scanf("%s%s",op,str);
		if(op[0] == 'I') insert(str);
		else printf("%d\n",query(str));
	}
	return 0;
}

2.并查集

面试常考,短而精巧,近乎O(1)的时间复杂度,集合1:
1.将两个集合合并
2.询问两个元素是否在一个集合当中

基本原理:每个集合用一棵树表示。树根编号就是整个集合的编号。每个节点存储他的父节点,p[x]表示x的父节点。
在这里插入图片描述例如:
在这里插入图片描述

#include <iostream>

using namespace std;

const int N = 100010;

int p[N],n,m;

int find(int x)//反回x的祖宗节点+路径压缩 
{
	if(p[x]!=x) p[x] = find(p[x]);
	return p[x];
}

int main()
{
	scanf("%d%d",&n,&m);
	for(int i = 1;i<n;i++) p[i] = i;
	
	while(m--)
	{
		char op[2];
		int a,b;
		scanf("%s%d%d",op,&a,&b);//读字母,字符都用char 
		
		if(op[0] == 'M')  p[find(a)] = find(b);//p[a]的父节点 = p[b] 
		else{
			if(find(a) == find(b)) puts("Yes");
			else puts("No");
		}
	}
	return 0;
}

在这里插入图片描述
1,2类似上一道,一个连同块一个集合。

eg:

#include <iostream>
using namespace std;

const int N = 100010;

int n,m;
int p[N],size[N];

int find(int x)
{
	if(p[x] != x) p[x] = find(p[x]);
	return p[x];
}

int main()
{
	scanf("%d%d",&n,&m);
	
	for(int i = 1;i<=n;i++)
	{
		p[i] = i;
		size[i] = 1;
	}
	
	while(m--)
	{
		char op[5];
		int a,b;
		scanf("%s",op);
		if(op[0] == 'C') 
		{
			scanf("%d%d",&a,&b);
			if(find(a) == find(b)) continue;
			size[find(b)] += size[find(a)];
			p[find(a)] = find(b);
		}
		
		else if(op[1] == '1')
		{
			scanf("%d%d",&a,&b);
			if(find(a) == find(b)) puts("Yes");
			else puts("No");
		}
		else
		{
			scanf("%d",&a);
			printf("%d\n",size[find(a)]);
		}
	}
}

3.堆

一维数组存小根堆,根为x,左儿子为2x,右儿子为2x+1,根小于等于左右儿子。
在这里插入图片描述up,down都是logn复杂度,删除是o(1)
建堆从n/2开始down,用数学归纳法证明是O(n)复杂度
模板代码

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;

int n,m;
int h[N],size;

void down(int u)
{
	int t = u;
	if(u*2<=size && h[u*2]<h[t]) t= u*2;
	if(u*2+1 <= size && h[u*2+1] < h[t]) t = u*2+1;
	if(u != t)
	{
		swap(h[u],h[t]);
		down(t);
	}
}

void up(int u)
{
	while(u/2&&h[u/2] > h[u])
	{
		swap(h[u/2],h[u]);
		u /= 2;
	}
}

int main()
{
	scanf("%d",&n,&m);#从前往后输出m个数
	for(int i = 1;i<=n;i++) scanf("%d",&h[i]);
	size = n;
	
	for(int i = n / 2; i; i--) down(i);
	
	while(m--)
	{
		printf("%d ",h[1]);
		h[1] = h[size];
		size--;
		down(1);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值