1.Tire树
高效地存储和查找字符串集合的数据结构
eg:
#include <iostream>
using namespace std;
const int N = 100010;
int son[N][26],cnt[N],idx;//下标是0的点,既是根节点,又是空节点
char str[N];
void insert(char str[])
{
int p = 0;
for(int i = 0;str[i];i++)
{
int u = str[i] - 'a';
if(!son[p][u]) son[p][u] = ++idx;
p = son[p][u];
}
cnt[p]++;//插入完打标记
}
//查询字符串出现的次数
int query(char str[])
{
int p = 0;
for(int i = 0;str[i];i++)
{
int u = str[i] - 'a';
if(!son[p][u]) return 0;
p = son[p][u];
}
return cnt[p];
}
int main()
{
int n;
scanf("%d",&n);
while(n--)
{
char op[2];
scanf("%s%s",op,str);
if(op[0] == 'I') insert(str);
else printf("%d\n",query(str));
}
return 0;
}
2.并查集
面试常考,短而精巧,近乎O(1)的时间复杂度,集合1:
1.将两个集合合并
2.询问两个元素是否在一个集合当中
基本原理:每个集合用一棵树表示。树根编号就是整个集合的编号。每个节点存储他的父节点,p[x]表示x的父节点。
例如:
#include <iostream>
using namespace std;
const int N = 100010;
int p[N],n,m;
int find(int x)//反回x的祖宗节点+路径压缩
{
if(p[x]!=x) p[x] = find(p[x]);
return p[x];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i<n;i++) p[i] = i;
while(m--)
{
char op[2];
int a,b;
scanf("%s%d%d",op,&a,&b);//读字母,字符都用char
if(op[0] == 'M') p[find(a)] = find(b);//p[a]的父节点 = p[b]
else{
if(find(a) == find(b)) puts("Yes");
else puts("No");
}
}
return 0;
}
1,2类似上一道,一个连同块一个集合。
eg:
#include <iostream>
using namespace std;
const int N = 100010;
int n,m;
int p[N],size[N];
int find(int x)
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1;i<=n;i++)
{
p[i] = i;
size[i] = 1;
}
while(m--)
{
char op[5];
int a,b;
scanf("%s",op);
if(op[0] == 'C')
{
scanf("%d%d",&a,&b);
if(find(a) == find(b)) continue;
size[find(b)] += size[find(a)];
p[find(a)] = find(b);
}
else if(op[1] == '1')
{
scanf("%d%d",&a,&b);
if(find(a) == find(b)) puts("Yes");
else puts("No");
}
else
{
scanf("%d",&a);
printf("%d\n",size[find(a)]);
}
}
}
3.堆
一维数组存小根堆,根为x,左儿子为2x,右儿子为2x+1,根小于等于左右儿子。
up,down都是logn复杂度,删除是o(1)
建堆从n/2开始down,用数学归纳法证明是O(n)复杂度
模板代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n,m;
int h[N],size;
void down(int u)
{
int t = u;
if(u*2<=size && h[u*2]<h[t]) t= u*2;
if(u*2+1 <= size && h[u*2+1] < h[t]) t = u*2+1;
if(u != t)
{
swap(h[u],h[t]);
down(t);
}
}
void up(int u)
{
while(u/2&&h[u/2] > h[u])
{
swap(h[u/2],h[u]);
u /= 2;
}
}
int main()
{
scanf("%d",&n,&m);#从前往后输出m个数
for(int i = 1;i<=n;i++) scanf("%d",&h[i]);
size = n;
for(int i = n / 2; i; i--) down(i);
while(m--)
{
printf("%d ",h[1]);
h[1] = h[size];
size--;
down(1);
}
return 0;
}