54 完全平方数

本文介绍了一个编程问题,如何使用非贪心的动态规划方法找到将给定整数n表示为最少完全平方数之和的方法。通过计算dp数组,求解过程中不采用贪心策略,给出了一段C++代码实现Solution类的numSquares函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 1 0 4 10^4 104

理解:dp[i] = 1 + min ⁡ j [ 1 , i ] d p [ i − j 2 ] 1 + {\min}_{j[1, \sqrt{i}]}dp[i-j^2] 1+minj[1,i ]dp[ij2] (不是贪心)

题解1 DP

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1, 0);
        for(int i = 1; i < n+1; i++){
            int tmpmin = INT_MAX;
            for(int j = 1; j*j <= i; j++){
                tmpmin = min(tmpmin, dp[i-j*j]);
            }
            dp[i] = tmpmin+1;
        }
        return dp[n];
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值