#include<iostream>
using namespace std;
//打印结点
void PrintArr(int *arr,int len)
{
for(int i=0;i<len;i++)
{
cout<<arr[i]<<" ";
}
cout<<endl;
}
//交换数据
void arrSwap(int *arr,int a,int b)
{
int temp=arr[a];
arr[a]=arr[b];
arr[b]=temp;
}
//调整堆
void HeapAdjust(int *arr,int index,int len)
{
int max=index;
int lchild=2*max+1;//数组中左子树的位置
int rchild=2*max+2;//数组中右子树的位置
if(lchild<len&&arr[lchild]>arr[max])
{
max=lchild;
}
if(rchild<len&&arr[rchild]>arr[max])
{
max=rchild;
}
if(max!=index)
{
//数据调整位置之后,可能接下来的二叉树不满足堆,因此要继续递归
arrSwap(arr,max,index);
HeapAdjust(arr,max,len);
}
}
//堆排序
void HeapSort(int *arr,int len)
{
//初始化堆
int x=0;
for(int i=len/2-1;i>=0;i--)
{
HeapAdjust(arr,i,len);
}
//交换堆顶元素
for(int i=len-1;i>=0;i--)
{
x++;
cout<<"第"<<x<<"步排序:";
PrintArr(arr,len);
arrSwap(arr,0,i);
//堆顶元素交换之后,堆顺序打乱,要重新调整堆
HeapAdjust(arr,0,i);
}
}
int main()
{
int myArray[]={4,2,8,0,5,7,1,3,9};
int len=sizeof(myArray)/sizeof(int);
cout<<"原始数组序列为:"<<endl;
PrintArr(myArray,len);
HeapSort(myArray,len);
cout<<"最终排序结果:"<<endl;
PrintArr(myArray,len);
}
//测试结果为:
原始数组序列为:
4 2 8 0 5 7 1 3 9
第1步排序:9 5 8 3 4 7 1 2 0
第2步排序:8 5 7 3 4 0 1 2 9
第3步排序:7 5 2 3 4 0 1 8 9
第4步排序:5 4 2 3 1 0 7 8 9
第5步排序:4 3 2 0 1 5 7 8 9
第6步排序:3 1 2 0 4 5 7 8 9
第7步排序:2 1 0 3 4 5 7 8 9
第8步排序:1 0 2 3 4 5 7 8 9
第9步排序:0 1 2 3 4 5 7 8 9
最终排序结果:
0 1 2 3 4 5 7 8 9
请按任意键继续. . .
就是不断维护一个大根堆,让每个结点都不小于其子节点,此时根节点必然是所有数字中最大的。然后,我们只需要将第一个与最后一个数字交换位置,就可将最大的数移动到数组的最后,然后再将数组前n-1个元素继续维护成大根堆,再将根节点与第n-1个元素交换位置,此时第n-1与第n个元素都已经按照升序排好了。我们只需要不断重复上述步骤,直到所有元素按照升序排好。
//调整堆
void HeapAdjust(int *arr,int index,int len)
{
int max=index;
int lchild=2*max+1;//数组中左子树的位置
int rchild=2*max+2;//数组中右子树的位置
if(lchild<len&&arr[lchild]>arr[max])
{
max=lchild;
}
if(rchild<len&&arr[rchild]>arr[max])
{
max=rchild;
}
if(max!=index)
{
//数据调整位置之后,可能接下来的二叉树不满足堆,因此要继续递归
arrSwap(arr,max,index);
HeapAdjust(arr,max,len);
}
}
有了这个调整大根堆的函数之后,我们就可以开始进行堆排序了
首先,我们要先进行建堆,也即把待排序的数组构建成大根堆。从最后一个非叶子节点开始进行调整,直到调整到根节点,这样就完成了建堆的操作,代码实现非常简单,只需要再循环中不断调用刚才写好的调整函数即可,直接看代码。
for(int i=len/2-1;i>=0;i--)
{
HeapAdjust(arr,i,len);
}
建好堆之后,就可以开始排序了,按照文章开头讲的思路,将根节点移动到第n位,然后维护前n-1个结点,再将根节点移到第n-1位,维护前n-2个结点,以此类推知道数组有序,来看代码实现。
//交换堆顶元素
for(int i=len-1;i>=0;i--)
{
x++;
cout<<"第"<<x<<"步排序:";
PrintArr(arr,len);
arrSwap(arr,0,i);
//堆顶元素交换之后,堆顺序打乱,要重新调整堆
HeapAdjust(arr,0,i);
}
//将第一个元素与最后元素交换后,前n-1个元素,除刚交换的第一个外都符合大根堆,因此只需要调整第一个结点即可完成对堆的维护
}