- 博客(19)
- 收藏
- 关注
原创 数据分析算法(一):决策树
机器学习之决策树提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用文章目录机器学习之决策树一、信息熵(entropy)二、使用步骤1.引入库2.读入数据总结一、信息熵(entropy)p(i|t) 代表了节点 t 为分类 i 的概率,其中 log2 为取以 2 为底的对数。这里我们不是来介绍公式的,而是说存在一种度量,它能帮我们反映出来这个信息的不确定度。当不确定性越大时,它所包含的信息量也就越大,信息熵也就越高。
2021-01-28 10:59:15 894
原创 Python 的进制问题
2进制表示方法2进制011011100101110111100010进制0123456782进制转化为10进制>>> 0b102>>> 0b110610进制转化为2进制>>> bin(2)'0b10'>>> bin(6)'0b110'8进制表示方法8进制0123456710111210进制01234
2021-01-07 10:47:04 201
原创 《R语言实战》学习笔记:第五章 高级数据管理
高级数据管理数学函数abs(x):求绝对值,例如 abs(-4) #返回值为4sqrt(x):求平方根,例如 sqrt(25) #返回值为5ceiling(x):不小于x 的最小整数,例如 ceiling(3.475) #返回值为4floor(x):不大于x 的最大整数,例如 floor(3.475) #返回值为3trunc(x):向0的方向截取的x 中的整数部分,例如 trunc(...
2019-08-10 17:45:15 4509
原创 R语言:常用apply函数(apply,tapply,sapply,lapply)用法介绍
apply函数对矩阵、数据框、数组(二维、多维)等矩阵型数据,按行或列应用函数FUN进行循环计算,并以返回计算结果apply(X, MARGIN, FUN, ...)X:数组、矩阵、数据框等矩阵型数据MARGIN: 按行计算或按按列计算,1表示按行,2表示按列FUN: 自定义的调用函数应用iris数据集进行举例,以下计算前四个变量的均值:a <- apply(iris[,...
2019-06-13 15:47:55 51764
原创 《R语言实战》学习笔记:第四章 基本数据管理
基本数据管理创建新变量**方法一:**直接添加manager <- c(1, 2, 3, 4, 5)date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09")country <- c("US", "US", "UK", "UK", "UK")gender <- c("M", "F", "F...
2019-06-07 12:37:16 1003
原创 《R语言实战》学习笔记:第三章 图像初阶
图像初阶同时打开多幅图像**方法一:**在创建一幅新图形之前打开一个新的图形窗口,每一幅新图形将出现在最近一次打开的窗口中,之后会打开多个图形用户界面dev.new( )statements to create graph 1 # 创建图形1dev.new( )statements to create a graph 2 # 创建图形2**注意:**也可用x11()打开新的图形窗口...
2019-05-12 23:37:18 920
原创 Numpy Ndarray 常用对象属性
ndarray.ndim用于返回数组的维数,等于秩import numpy as np a = np.arange(24) print (a.ndim) # a 现只有一个维度#输出1# 现在调整其大小b = a.reshape(2,4,3) # b 现在拥有三个维度print (b.ndim)#输出3ndarray.shape表示数组...
2019-05-05 21:31:43 2342
原创 NumPy Ndarray 对象
ndarry:多维数组对象数据切片是原始数组的视图,数据不会被复制,试图上的任何修改都会直接反映到源数据上:a = np.arange(10)aOut[11]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])b = a[5:8]bOut[13]: array([5, 6, 7])b[2] = 1bOut[15]: array([5, 6, ...
2019-05-05 21:31:23 317
原创 Echarts模板(六):馅饼图
本人刚参加完市场调查大赛,在这个过程中为了画图试过很多软件,相比于Tableau的所见即所得,虽然操作简单,但步骤繁琐,最后我选择使用Echarts画图,它不仅操作简单,而且图像美观,只需要一点点代码基础就能实现。接下来,我向大家分享以下我用到的几个图的模板代码,你在使用的时候均可通过以下代码进行修改,由于本人没有学过JS,不对的地方还请大家多多指教option = { toolbo...
2019-04-28 18:26:03 1232
原创 Echarts模板(五):树状图
本人刚参加完市场调查大赛,在这个过程中为了画图试过很多软件,相比于Tableau的所见即所得,虽然操作简单,但步骤繁琐,最后我选择使用Echarts画图,它不仅操作简单,而且图像美观,只需要一点点代码基础就能实现。接下来,我向大家分享以下我用到的几个图的模板代码,你在使用的时候均可通过以下代码进行修改,由于本人没有学过JS,不对的地方还请大家多多指教option = { textSt...
2019-04-28 18:25:47 5385
原创 Echarts模板(四):环形图
本人刚参加完市场调查大赛,在这个过程中为了画图试过很多软件,相比于Tableau的所见即所得,虽然操作简单,但步骤繁琐,最后我选择使用Echarts画图,它不仅操作简单,而且图像美观,只需要一点点代码基础就能实现。接下来,我向大家分享以下我用到的几个图的模板代码,你在使用的时候均可通过以下代码进行修改,由于本人没有学过JS,不对的地方还请大家多多指教option = { toolbo...
2019-04-28 18:25:31 1176
原创 Echarts模板(三):分裂饼图
本人刚参加完市场调查大赛,在这个过程中为了画图试过很多软件,相比于Tableau的所见即所得,虽然操作简单,但步骤繁琐,最后我选择使用Echarts画图,它不仅操作简单,而且图像美观,只需要一点点代码基础就能实现。接下来,我向大家分享以下我用到的几个图的模板代码,你在使用的时候均可通过以下代码进行修改,由于本人没有学过JS,不对的地方还请大家多多指教option = { textSty...
2019-04-28 18:25:12 6008 2
原创 Echarts模板(二):簇状柱形图
本人刚参加完市场调查大赛,在这个过程中为了画图试过很多软件,相比于Tableau的所见即所得,虽然操作简单,但步骤繁琐,最后我选择使用Echarts画图,它不仅操作简单,而且图像美观,只需要一点点代码基础就能实现。接下来,我向大家分享以下我用到的几个图的模板代码,你在使用的时候均可通过以下代码进行修改,由于本人没有学过JS,不对的地方还请大家多多指教option = { toolbo...
2019-04-28 18:24:52 2565
原创 Echarts模板(一):南丁格尔玫瑰图
本人刚参加完市场调查大赛,在这个过程中为了画图试过很多软件,相比于Tableau的所见即所得,虽然操作简单,但步骤繁琐,最后我选择使用Echarts画图,它不仅操作简单,而且图像美观,只需要一点点代码基础就能实现。接下来,我向大家分享以下我用到的几个图的模板代码,你在使用的时候均可通过以下代码进行修改,由于本人没有学过JS,不对的地方还请大家多多指教option = { textS...
2019-04-28 18:23:30 9199 1
原创 Python 6种数据类型总结
数据类型**不可变数据:**Number(数字)、String(字符串)、Tuple(元组)**可变数据:**List(列表)、Dictionary(字典)、Set(集合)Number(数字)常用的数学函数abs(x) #返回数字的绝对值,如abs(-10) 返回 10math.fabs(x) #返回数字的绝对值,如math.fabs(-10) 返回10.0e...
2019-04-21 00:08:11 13533
原创 《R语言实战》学习笔记:第二章 创建数据集
创建数据集R可以处理的数据类型(模式),包括数值型、字符型、逻辑型(TRUE/FALSE)、复数型(虚数)和原生型(字节)数据结构R用于存储数据的对象类型,包括标量、向量、矩阵、数组、数据框和列表:向量y <- c(8, 3, 5, 7, 6, 2, 8, 9)any(y < 10) #任意元素满足条件返回真值#输出 TRUEall(y < 1...
2019-03-31 20:52:36 1448
原创 《R语言实战》学习笔记:第一章 R语言介绍
R语言介绍数值运算age <- c(1, 3, 5, 2, 11, 9, 3, 9, 12, 3)weight <- c(4.4, 5.3, 7.2, 5.2, 8.5, 7.3, 6.0, 10.4, 10.2, 6.1)mean(weight) #求均值sd(weight) #求方差cor(age, weight) #求相关系数plot(ag...
2019-03-30 16:12:53 1006
原创 三级数据库笔记(完整)
三级数据库背诵资料第一章 计算机基础知识1、冯.诺依曼计算机以“存储程序”原理为基础,由运算器、存储器、控制器、输入设备和输出设备等五大部件组成。2、计算机指令系统:系列计算机:指令系统向下兼容。复杂指令系统计算机:CISC (Complex Instruction Set Computer)精简指令系统计算机:RISC (Reduced Instruction Set Compute...
2019-03-30 10:42:43 9000 2
原创 计算机三级-数据库技术
三级数据库技术知识点总结1 数据字典是对系统种各类数据描述的集合,包括数据项,数据结构,数据流,数据存储和处理过程五个部分2 数据模型的三要素:数据结构、数据操作和完整性约束3 数据库系统:一般由数据库、操作系统、数据库管理系统(及其工具)、应用系统、数据库管理人员和用户构成4 数据模型: 数据模型是数据库系统的数学形式框架,是数据库系统的核心和基础5 数据模型的分类:概念模型,也称信息...
2019-03-30 10:30:54 19425 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人