深入理解树状数组

先上模板…

树状数组模板

单点更新
const int N = 1003;
int n;
int a[N];
void update(int i, int d) { //在i位置加上d
  for(; i <= n; i += i & -i) a[i] += d; 
}
int getsum(int i) { //获取i位置的前缀和
  int sum = 0;
  for(; i; i -= i & -i) sum += a[i];
  return sum;
}
区间更新
const int N = 1003;
int n;
int a[N];
void update(int i, int d) { //在i位置加上d
  for(; i <= n; i += i & -i) a[i] += d; 
}
int getsum(int i) { //获取i位置的值
  int sum = 0;
  for(; i; i -= i & -i) sum += a[i];
  return sum;
}
void range_update(int l, int r, int d) { //在l~r上加上d
  update(l, d); update(r+1, -d);
}

树状数组引言

嗯…大概就是树状数组有个啥用处之类的话…
有一类这样的题目,给你一串数字,其中有很多询问,问的是某一段上的和是多少。
初始数组a[] = {0,2,-1,0,3,4},再有3个询问。
数组中1~2的和是多少? 答案:a[1] + a[2] = 1
数组中2~3的和是多少? 答案:a[2] + a[3] = -1
数组中3~5的和是多少? 答案:a[3] + a[4] + a[5] = 7
如果是正常的思维,我们可能会直接暴力循环去计算出答案,但如果数组长度很大,询问很多, 直接循环暴力的复杂度就很高。所以这时候就引进了前缀和,如果首先先处理出它的前缀和,就能O(1)得出答案了。
处理后数组b[] = {0,2,1,1,4,8},再有3个询问。
数组中1~2的和是多少? 答案:b[2] - b[0] = 1
数组中2~3的和是多少? 答案:b[3] - b[1] = -1
数组中3~5的和是多少? 答案:b[5] - b[2] = 7
所以从这里就可以发现出,我们可以先处理出数组某一段区间的和存起来,方便我们以后使用。
现在如果不只是询问,而是时而询问时而修改呢,那这样预处理出来的前缀和也有可能是错的,所以就引入了树状数组,能够在O(logn)时间内完成询问和修改。

树状数组上场

我刚开始接触树状数组时跳过了理解它的过程,只学习了要怎么用,一直不知道为什么能在logn的时间里完成n时间的操作。其实就是二进制,它用到了lowbit这样的东西。

int lowbit(int x) { return x & (-x); }

lowbit的实现的操作就是计算出二进制中最后一位的1所在位置的值等于多少。

lowbit( 1 ( 001 ) 1_{(001)} 1(001)) = 1 ( 001 ) 1_{(001)} 1(001), lowbit( 2 ( 010 ) 2_{(010)} 2(010)) = 2 ( 010 ) 2_{(010)} 2(010)
lowbit( 3 ( 011 ) 3_{(011)} 3(011)) = 1 ( 001 ) 1_{(001)} 1(001), lowbit( 4 ( 100 ) 4_{(100)} 4(100)) = 4 ( 100 ) 4_{(100)} 4(100)
lowbit( 5 ( 101 ) 5_{(101)} 5(101)) = 1 ( 001 ) 1_{(001)} 1(001), lowbit( 6 ( 110 ) 6_{(110)} 6(110)) = 2 ( 010 ) 2_{(010)} 2(010)
lowbit( 7 ( 111 ) 7_{(111)} 7(111)) = 1 ( 001 ) 1_{(001)} 1(001)

树状数组处理后的数组 b [ i ] = a [ i − l o w b i t ( i ) + 1 ] + a [ i − l o w b i t ( i ) + 2 ] + . . . + a [ i ] b[i] = a[i-lowbit(i)+1] + a[i-lowbit(i)+2] + ... + a[i] b[i]=a[ilowbit(i)+1]+a[ilowbit(i)+2]+...+a[i]

那么为什么要这样做呢,这样做有什么好处呢?
因为在这样操作了后,b[i]再进行其逆过来加到sum里,sum能恰好表示出a数组的前缀和,这样做的好处就是优化了时间复杂度i-lowbit(i)+1~i之间最多就只有logn那么大。

那么要怎么逆操作呢,为什么sum就恰好能表示出a数组的前缀和呢?
其中,b[1] = a[1],
b[2] = a[1] + a[2],
b[3] = a[3]
b[4] = a[1] + a[2] + a[3] + a[4],
b[5] = a[5],
b[6] = a[5] + a[6],
b[7] = a[7]
如果这时候要求1~7的前缀和,对b[7]逆操作加到sum里。
首先 sum += b[7], 7 -= lowbit(7) -> 6
sum += b[6], 6 -= lowbit(6) -> 4
sum += b[4], 4 -= lowbit(4) -> 0退出
发现这样的话sum = b[7] + b[6] + b[4],正好能表示出1~7的前缀和。

那么这到底是怎么回事呢,就是二进制不断丢1的过程。
对于7,是从111到110到100…mark!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值