作为一个化学小考只有77分的同学,小W感觉很有压力,所以他决定搞化学。今天他开始研究超氧化钾,这是一种很神奇的离子化合物,在高温下空间结构是立方体,如下图所示。有一天教黄交给了小W一个任务:根据教黄多年淘金的经验,他发现超氧化钾有一个神奇的性质就是如果一组有序的整数(x,y,z)满足z=x mod 1+x mod 2+…+x mod y,那么对于超氧化钾来说这个位置上的离子就是一个关键离子。通过用回旋加速器得到高速粒子来攻击这个离子,他就可以获得铜铝制金法的催化剂。现在教黄想知道对于一个给定的x和y对应的z值是多少。
Input
两个整数x,y。
Output
一个整数z。
Sample Input
1 1
Sample Output
0
Data Constraint
40%的数据,y<=10^5。
100%的数据,1<=x,y<=10^9。
解析:很明显的规律题,我最开始写了一个暴力和规律对拍,最后找到正解,规律:x/i(i>=2)-r(最开始为y)是一个等差数列公差为i-1;
#include <bits/stdc++.h>
using namespace std;
long long f,l,r,x,y,t,z=0;//l,r分别为等差数列区间的左右端,f为等差数列的长度
int main()
{
cin>>x>>y;
if (y>x)//特判情况将>x的部分先加
{
z=(y-x)*x;
y=x;
}
t=1;
r=y;//细节
if (y==1)
{
cout<<0;
return 0;
}
while (1<2)
{
t++;
l=x/t+1;
if (l>=r)
{
if (r==y) continue;//有可能有y<x/t的情况,如果不跳过就结束了
break;
}
f=r-l+1;
if (f%2==0) //找规律
{
f/=2;
z+=((x%l+x%r)*f);
// cout<<((x%l)*f)<<endl;
}
else
{
f/=2;
z+=((x%l+x%r)*f);
z+=((x%l+x%r)/2);
// cout<<((x%l+x%r)*f+((x%l+x%r)/2))<<endl;
}
r=l-1;
}
for (int i=1;i<=r;i++)
z+=(x%i);//加上前面没有规律的部分
cout<<z;
}