建堆、堆排序

     我们前面已经了解过什么是堆,现在我们来根据它的特征来研究如何建一个堆。

1.建堆

  • 图解思路

初始化,申请空间,给堆赋值在这里插入图片描述
在这里插入图片描述

  • 代码实现
typedef int Datatype;
//创建堆的结构体
typedef struct Heap {
	Datatype* array;
	int capacity;
	int size;
}Heap;

//初始化堆
void InitHeap(Heap* hp,Datatype* array, int size) {
	assert(hp);
	hp->array = (Datatype*)malloc(sizeof(Datatype)* size);
	if (hp->array == NULL) {
		return;
	}
	hp->capacity = size;
	for (int i = 0; i < size; i++) {
		hp->array[i] = array[i];
	}
	hp->size = size;

	//调整该二叉树;使其满足堆的性质
    //找倒数第一个非叶子节点,开始向下调整,调用AdjustDown
	int leaflast = ((size - 2) >> 1);
	for (; leaflast >= 0;leaflast--) {
		AdjustDown(hp->array, size, leaflast);
	}
}

//交换
int Swap(int* a,int* b) {
	int tmp;
	tmp = *a;
	*a = *b;
	*b = tmp;
}

//向下调整
void AdjustDown(Datatype* array, int size, int parent) {
	int child = parent * 2 + 1;   //默认标记左孩子
	while (child < size) {
		//找左右孩子中的小孩子,右孩子要想存在
		if (child+1<size && array[child + 1] < array[child]) {
			child += 1;         //右比左小    child标记的小孩子更换
		}
		if (array[child] < array[parent]) {
			Swap(&array[child], &array[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else {
			return;   
		}
	}
}

     以上,我们的堆已经建成功,如果需要建大堆,我们可以左右孩子中的较大的孩子,与父母做出比较 ,判断是否需要交换。
     

2.堆排序

     那么如何利用堆的结构实现排序的功能。首先,将 N N N个元素建堆,如果升序排列建大堆降序排列建小堆。然后将堆顶元素与最后一个元素交换,在将剩下的元素重新调整得到满足堆的新的堆顶元素,重复之前的步骤,每次元素的数量减一。最后,就可以得到我们要求的序列。

  • 代码实现
//为实现排序调整堆(向下调整)
void HeapAdjust(int* array,int size,int parent) {
	int child = parent * 2 + 1;   //默认标记左孩子
	while (child < size) {
		//找左右孩子中的小孩子,右孩子要想存在
		if (child + 1 < size && array[child + 1] < array[child]) {
			child += 1;         //右比左小    child标记的小孩子更换
		}
		if (array[child] < array[parent]) {
			Swap(&array[child], &array[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else {
			return;
		}
	}

}
//排序
void  HeapSort(int* array, int size) {
	//找倒数第一个非叶子节点,得到小堆
	int leaflast = ((size - 2) >> 1);
	for (; leaflast >= 0; leaflast--) {
		HeapAdjust(array, size, leaflast);
	}
	//堆顶元素与最后一个元素交换,再调整
	int end = size - 1;
	while (end) {
		Swap(&array[0], &array[end]);
		HeapAdjust(array, end, 0);
		end--;
	}
}

     时间复杂度: N l o g N Nlog{N} NlogN
     以上,实现了降序的排列方式,若要实现升序,只需要建立大堆即可。

3.堆的应用

      TOP k 问题:在 N N N个数据中找最大的或者最小的前 k k k个元素。求最大建小堆,求最小建大堆。(此处以找最大的前K各元素为例)
具体做法:

  1. 先遍历得到前 k k k个元素,建立堆。
  2. 用剩下 N − k N-k Nk个元素与堆顶元素比较,比堆顶大就替换,比堆顶小就丢弃,再调整当前堆, 直到结束,就找到了最大的前 K K K个元素。

     时间复杂度 N l o g K NlogK NlogK

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值